Skip to content

Particle motion: the missing link in underwater acoustic ecology

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)836-842
Number of pages7
JournalMethods in Ecology and Evolution
Volume7
Early online date2 Mar 2016
DOIs
DateAccepted/In press - 5 Jan 2016
DateE-pub ahead of print - 2 Mar 2016
DatePublished (current) - 1 Jul 2016

Abstract

1. Sound waves in water have both a pressure and a particle motion component, yet few studies of underwater acoustic ecology have measured the particle motion component of sound. While mammal hearing is based on detection of sound pressure, fish and invertebrates (i.e. most aquatic animals) primarily sense sound using particle motion. Particle motion can be calculated indirectly from sound pressure measurements under certain conditions, but these conditions are rarely met in the shelf sea and shallow water habitats that most aquatic organisms inhabit. Direct measurements of particle motion have been hampered by the availability of instrumentation and a lack of guidance on data analysis methods.

2. Here, we provide an introduction to the topic of underwater particle motion, including the physics and physiology of particle motion reception. We include a simple computer program for users to determine whether they are working in conditions where measurement of particle motion may be relevant. We discuss instruments that can be used to measure particle motion and the types of analysis appropriate for data collected. A supplemental tutorial and template computer code in MATLAB will allow users to analyse impulsive, continuous and fluctuating sounds from both pressure and particle motion recordings.

3. A growing body of research is investigating the role of sound in the functioning of aquatic ecosystems, and the ways in which sound influences animal behaviour, physiology and development. This work has particular urgency for policymakers and environmental managers, who have a responsibility to assess and mitigate the risks posed by rising levels of anthropogenic noise in aquatic ecosystems. As this paper makes clear, since most aquatic life senses sound using particle motion, this component of the sound field must be addressed if acoustic habitats are to be managed effectively.

Additional information

Corrigendum correcting acknowledgements with funder information, published 16/01/2017. Added as link and supplementary information PDF.

    Research areas

  • Accelerometer, Aquatic invertebrates, Bioacoustics, Fish, PaPAM, Particle motion, Sound analysis programme, Underwater acoustics

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Wiley at http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12544/abstract. Please refer to any applicable terms of use of the publisher.

    Final published version, 1 MB, PDF document

    Licence: CC BY

  • Supplementary information PDF

    Final published version, 63 KB, PDF document

DOI

View research connections

Related faculties, schools or groups