Periodicity in the transient regime of exhaustive polling systems

I MacPhee, M Menshikov, S Popov, S Volkov

Research output: Contribution to journalArticle (Academic Journal)peer-review

6 Citations (Scopus)

Abstract

We consider an exhaustive polling system with three nodes in its transient regime under a switching rule of generalized greedy type. We show that, for the system with Poisson arrivals and service times with finite second moment, the sequence of nodes visited by the server is eventually periodic almost surely. To do this, we construct a dynamical system, the triangle process, which we show has eventually periodic trajectories for almost all sets of parameters and in this case we show that the stochastic trajectories follow the deterministic ones a.s. We also show there are infinitely many sets of parameters where the triangle process has aperiodic trajectories and in such cases trajectories of the stochastic model are aperiodic with positive probability.
Translated title of the contributionPeriodicity in the transient regime of exhaustive polling systems
Original languageEnglish
Pages (from-to)1816 - 1850
Number of pages35
JournalAnnals of Applied Probability
Volume16 (4)
DOIs
Publication statusPublished - Nov 2006

Bibliographical note

Publisher: Institute of Mathematical Statistics

Fingerprint

Dive into the research topics of 'Periodicity in the transient regime of exhaustive polling systems'. Together they form a unique fingerprint.

Cite this