Projects per year
Abstract
Photoredox catalysis of chemical reactions, using light-activated molecules which serve as electron donors or acceptors to initiate chemical transformations under mild conditions, is finding widespread use in the synthesis of organic compounds and materials. The transition-metal-centred complexes first developed for these photoredox-catalysed applications are steadily being superseded by more sustainable and lower toxicity organic photocatalysts. While the diversity of possible structures for photoredox-active organic molecules brings benefits of design flexibility, it also presents considerable challenges for optimization of the photocatalyst molecular architecture. Transient absorption spectroscopy over timescales from the femtosecond to microsecond domains can explore the detailed mechanisms of activation and reaction of these organic photocatalysts in solution, and by linking their dynamical properties to their structures, has the potential to establish reliable design principles for future development of improved photocatalysts.
Original language | English |
---|---|
Article number | 010901 |
Number of pages | 7 |
Journal | Structural Dynamics |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - 23 Jan 2019 |
Fingerprint
Dive into the research topics of 'Perspective: How can ultrafast laser spectroscopy inform the design of new organic photoredox catalysts for chemical and materials synthesis?'. Together they form a unique fingerprint.Projects
- 2 Finished
-
-
Mapping Pathways in Photocatalytic Cycles using Ultrafast Spectroscopy
Orr-Ewing, A. J. (Principal Investigator)
1/03/18 → 28/02/21
Project: Research