Perturbation methods for the estimation of parameter variability in stochastic model updating

HH Khodaparast, JE Mottershead, MI Friswell

Research output: Contribution to journalArticle (Academic Journal)peer-review

209 Citations (Scopus)

Abstract

The problem of model updating in the presence of test-structure variability is addressed. Model updating equations are developed using the sensitivity method and presented in a stochastic form with terms that each consist of a deterministic part and a random variable. Two perturbation methods are then developed for the estimation of the first and second statistical moments of randomised updating parameters from measured variability in modal responses (e.g. natural frequencies and mode shapes). A particular aspect of the stochastic model updating problem is the requirement for large amounts of computing time, which may be reduced by making various assumptions and simplifications. It is shown that when the correlation between the updating parameters and the measurements is omitted, then the requirement to calculate the second-order sensitivities is no longer necessary, yet there is no significant deterioration in the estimated parameter distributions. Numerical simulations and a physical experiment are used to illustrate the stochastic model updating procedure.
Translated title of the contributionPerturbation methods for the estimation of parameter variability in stochastic model updating
Original languageEnglish
Pages (from-to)1751 - 1773
Number of pages23
JournalMechanical Systems and Signal Processing
Volume22 (8)
DOIs
Publication statusPublished - Nov 2008

Bibliographical note

Publisher: Elsevier

Fingerprint

Dive into the research topics of 'Perturbation methods for the estimation of parameter variability in stochastic model updating'. Together they form a unique fingerprint.

Cite this