TY - JOUR
T1 - Pharmacological inhibition of ezrin reduces proliferative and invasive phenotype in acute lymphoblastic leukemia cells
AU - Lipreri da Silva, Jean Carlos
AU - Lima, Keli
AU - Ede, Benjamin
AU - Lazarini, Mariana
AU - Vicari, Hugo Passos
AU - Nogueira, Frederico Lisboa
AU - Clayton, Natasha S.
AU - Pinnell, Katy
AU - Silva, Wellington Fernandes da
AU - Velloso, Elvira Deolinda Rodrigues Pereira
AU - Bendit, Israel
AU - Costa-Lotufo, Leticia Veras
AU - Rego, Eduardo Magalhães
AU - Ridley, Anne J.
AU - Machado-Neto, João Agostinho
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2025/1/15
Y1 - 2025/1/15
N2 - Ezrin (EZR) is an actin-associated protein that is often upregulated in cancers. Here we investigate the role of EZR in acute lymphoblastic leukemia (ALL) and explore the therapeutic potential of a pharmacological EZR inhibitor, NSC305787. ALL patient cohorts exhibit significantly elevated EZR mRNA levels, indicating its association with the malignant phenotype. Notably, EZR expression does not impact survival outcomes or relevant clinical-laboratory characteristics, suggesting a role in disease initiation rather than therapy response. NSC305787 induces a dose-dependent reduction in ALL cell viability, and is more potent than a related EZR inhibitor, NSC668394. NSC305787 has multiple effects on ALL cells, including apoptosis induction, clonal growth reduction, and inhibition of cell cycle progression. Importantly, it diminishes adhesiveness and invasiveness in ALL cells. Proteomics analysis highlights changes in translation, RNA catabolism, and cell cycle regulation, emphasizing the broad impact of EZR inhibition on ALL cell biology. Ex vivo assays with primary cells from acute myeloid leukemia (AML) and ALL patients demonstrate NSC305787's efficacy across a molecularly heterogeneous group, independent of risk stratification or recurrent mutations. Notably, NSC305787 shows heightened potency in ALL cells, suggesting its potential as a targeted therapy. In conclusion, our results report high EZR expression in adult ALL patients and support NSC305787 as a promising targeted therapy for ALL that should be further explored.
AB - Ezrin (EZR) is an actin-associated protein that is often upregulated in cancers. Here we investigate the role of EZR in acute lymphoblastic leukemia (ALL) and explore the therapeutic potential of a pharmacological EZR inhibitor, NSC305787. ALL patient cohorts exhibit significantly elevated EZR mRNA levels, indicating its association with the malignant phenotype. Notably, EZR expression does not impact survival outcomes or relevant clinical-laboratory characteristics, suggesting a role in disease initiation rather than therapy response. NSC305787 induces a dose-dependent reduction in ALL cell viability, and is more potent than a related EZR inhibitor, NSC668394. NSC305787 has multiple effects on ALL cells, including apoptosis induction, clonal growth reduction, and inhibition of cell cycle progression. Importantly, it diminishes adhesiveness and invasiveness in ALL cells. Proteomics analysis highlights changes in translation, RNA catabolism, and cell cycle regulation, emphasizing the broad impact of EZR inhibition on ALL cell biology. Ex vivo assays with primary cells from acute myeloid leukemia (AML) and ALL patients demonstrate NSC305787's efficacy across a molecularly heterogeneous group, independent of risk stratification or recurrent mutations. Notably, NSC305787 shows heightened potency in ALL cells, suggesting its potential as a targeted therapy. In conclusion, our results report high EZR expression in adult ALL patients and support NSC305787 as a promising targeted therapy for ALL that should be further explored.
U2 - 10.1016/j.ejphar.2024.177161
DO - 10.1016/j.ejphar.2024.177161
M3 - Article (Academic Journal)
C2 - 39615869
SN - 0014-2999
VL - 987
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
M1 - 177161
ER -