TY - JOUR
T1 - Photodissociation of S2 (X3ςg -, a1Δg, and b1ςg +) in the 320-205 nm Region
AU - Sun, Z. F.
AU - Farooq, Z.
AU - Parker, D. H.
AU - Martin, P. J. J.
AU - Western, C. M.
PY - 2019/8/15
Y1 - 2019/8/15
N2 - Photodissociation of vibrationally and electronically excited sulfur dimer molecules (S2) has been studied in a combined experimental and computational quantum chemistry study in order to characterize bound-continuum transitions. Ab initio quantum chemistry calculations are carried out to predict the potential energy curves, spin-orbit coupling, transition moments, and bound-continuum spectra of S2 for comparison with the experimental data. The experiment uses velocity map imaging to measure S-atom production following S2 photoexcitation in the ultraviolet region (320-205 nm). A pulsed electric discharge in H2S produces ground-state S2 X3ςg -(v = 0-15) as well as electronically excited singlet sulfur and b1ςg +(v = 0, 1), and evidence is presented for the production and photodissociation of S2 a1Δg. In a previous paper, we reported threshold photodissociation of S2X3ςg -(v = 0) in the 282-266 nm region. In the present study, S(3PJ) fine structure branching and angular distributions for photodissociation of S2 (X3ςg -(v = 0), a1Δg and b1ςg +) via the B″3IIu, B3ςu - and 11IIu excited states are reported. In addition, photodissociation of the X3ςg -(v = 0) state of S2 to the second dissociation limit producing S(3P2) + S(1D) is characterized. The present results on S2 photodynamics are compared to those of the well-studied electronically isovalent O2 molecule.
AB - Photodissociation of vibrationally and electronically excited sulfur dimer molecules (S2) has been studied in a combined experimental and computational quantum chemistry study in order to characterize bound-continuum transitions. Ab initio quantum chemistry calculations are carried out to predict the potential energy curves, spin-orbit coupling, transition moments, and bound-continuum spectra of S2 for comparison with the experimental data. The experiment uses velocity map imaging to measure S-atom production following S2 photoexcitation in the ultraviolet region (320-205 nm). A pulsed electric discharge in H2S produces ground-state S2 X3ςg -(v = 0-15) as well as electronically excited singlet sulfur and b1ςg +(v = 0, 1), and evidence is presented for the production and photodissociation of S2 a1Δg. In a previous paper, we reported threshold photodissociation of S2X3ςg -(v = 0) in the 282-266 nm region. In the present study, S(3PJ) fine structure branching and angular distributions for photodissociation of S2 (X3ςg -(v = 0), a1Δg and b1ςg +) via the B″3IIu, B3ςu - and 11IIu excited states are reported. In addition, photodissociation of the X3ςg -(v = 0) state of S2 to the second dissociation limit producing S(3P2) + S(1D) is characterized. The present results on S2 photodynamics are compared to those of the well-studied electronically isovalent O2 molecule.
UR - http://www.scopus.com/inward/record.url?scp=85070671204&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.9b05350
DO - 10.1021/acs.jpca.9b05350
M3 - Article (Academic Journal)
C2 - 31322887
SN - 1089-5639
VL - 123
SP - 6886
EP - 6896
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 32
ER -