TY - JOUR
T1 - Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions
T2 - (C 6 F 6 ) n - (n = 1-5) and I - (C 6 F 6 ): Published as part of the Journal of Physical Chemistry virtual special issue "young Scientists"
AU - Rogers, Joshua P.
AU - Anstöter, Cate S.
AU - Bull, James N.
AU - Curchod, Basile F.E.
AU - Verlet, Jan R.R.
N1 - Funding Information:
This work was supported by the European Research Council through Starting Grant 306536.
Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/2/28
Y1 - 2019/2/28
N2 - Frequency-resolved (2D) photoelectron (PE) spectra of the anionic clusters (C 6 F 6 ) n - , for n = 1-5, and time-resolved PE spectra of I - C 6 F 6 are presented using a newly built instrument and supported by electronic structure calculations. From the 2D PE spectra, the vertical detachment energy (VDE) of C 6 F 6 - was measured to be 1.60 ± 0.01 eV, and the adiabatic detachment energy (ADE) was ≤0.70 eV. The PE spectra also contain fingerprints of resonance dynamics over certain photon energy ranges, in agreement with the calculations. An action spectrum over the lowest resonance is also presented. The 2D spectra of (C 6 F 6 ) n - show that the cluster can be described as C 6 F 6 - (C 6 F 6 ) n'1 . The VDE increases linearly (200 ± 20 meV n -1 ) due to the stabilizing influence on the anion of the solvating C 6 F 6 molecules. For I - C 6 F 6 , action spectra of the absorption just below both detachment channels are presented. Time-resolved PE spectra of I - C 6 F 6 excited at 3.10 eV and probed at 1.55 eV reveal a short-lived nonvalence state of C 6 F 6 - that coherently evolves into the valence ground state of the anion and induces vibrational motion along a specific buckling coordinate. Electronic structure calculations along the displacement of this mode show that at the extreme buckling angle the probe can access an excited state of the anion that is bound at that geometry but adiabatically unbound. Hence, slow electrons are emitted and show dynamics that predominantly probe the outer-turning point of the motion. A PE spectrum taken at t = 0 contains a vibrational structure assigned to a specific Raman- or IR-active mode of C 6 F 6 .
AB - Frequency-resolved (2D) photoelectron (PE) spectra of the anionic clusters (C 6 F 6 ) n - , for n = 1-5, and time-resolved PE spectra of I - C 6 F 6 are presented using a newly built instrument and supported by electronic structure calculations. From the 2D PE spectra, the vertical detachment energy (VDE) of C 6 F 6 - was measured to be 1.60 ± 0.01 eV, and the adiabatic detachment energy (ADE) was ≤0.70 eV. The PE spectra also contain fingerprints of resonance dynamics over certain photon energy ranges, in agreement with the calculations. An action spectrum over the lowest resonance is also presented. The 2D spectra of (C 6 F 6 ) n - show that the cluster can be described as C 6 F 6 - (C 6 F 6 ) n'1 . The VDE increases linearly (200 ± 20 meV n -1 ) due to the stabilizing influence on the anion of the solvating C 6 F 6 molecules. For I - C 6 F 6 , action spectra of the absorption just below both detachment channels are presented. Time-resolved PE spectra of I - C 6 F 6 excited at 3.10 eV and probed at 1.55 eV reveal a short-lived nonvalence state of C 6 F 6 - that coherently evolves into the valence ground state of the anion and induces vibrational motion along a specific buckling coordinate. Electronic structure calculations along the displacement of this mode show that at the extreme buckling angle the probe can access an excited state of the anion that is bound at that geometry but adiabatically unbound. Hence, slow electrons are emitted and show dynamics that predominantly probe the outer-turning point of the motion. A PE spectrum taken at t = 0 contains a vibrational structure assigned to a specific Raman- or IR-active mode of C 6 F 6 .
UR - http://www.scopus.com/inward/record.url?scp=85061901325&partnerID=8YFLogxK
U2 - 10.1021/acs.jpca.8b11627
DO - 10.1021/acs.jpca.8b11627
M3 - Article (Academic Journal)
C2 - 30694676
AN - SCOPUS:85061901325
SN - 1089-5639
VL - 123
SP - 1602
EP - 1612
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
IS - 8
ER -