TY - JOUR
T1 - Plasma adiponectin levels and type 2 diabetes risk
T2 - a nested case-control study in a Chinese population and an updated meta-analysis
AU - Wang, Yeli
AU - Meng, Ruiwei
AU - Kunutsor, Setor
AU - Chowdhury, Rajiv
AU - Yuan, Jian-Min
AU - Koh, Woon-Puay
AU - Pan, An
PY - 2018/1/10
Y1 - 2018/1/10
N2 - Results from previous prospective studies assessing the relation between adiponectin and type 2 diabetes (T2D) were not entirely consistent, and evidence in Chinese population is scarce. Moreover, the last meta-analysis did not examine the impact of metabolic variables on the adiponectin-T2D association. Therefore, we prospectively evaluated the adiponectin-T2D association among 571 T2D cases and 571 age-sex-matched controls nested within the Singapore Chinese Health Study (SCHS). Furthermore, we conducted an updated meta-analysis by searching prospective studies on Pubmed till September 2016. In the SCHS, the odds ratio of T2D, comparing the highest versus lowest tertile of adiponectin levels, was 0.30 (95% confidence interval: 0.17, 0.55) in the fully-adjusted model. The relation was stronger among heavier participants (body mass index ≥23 kg/m2) compared to their leaner counterparts (P for interaction = 0.041). In a meta-analysis of 34 prospective studies, the pooled relative risk was 0.53 (95% confidence interval: 0.47, 0.61) comparing the extreme tertiles of adiponectin with moderate heterogeneity (I 2 = 48.7%, P = 0.001). The adiponectin-T2D association remained unchanged after adjusting for inflammation and dyslipidemia markers, but substantially attenuated with adjustment for insulin sensitivity and/or glycaemia markers. Overall evidence indicates that higher adiponectin levels are associated with decreased T2D risk in Chinese and other populations.
AB - Results from previous prospective studies assessing the relation between adiponectin and type 2 diabetes (T2D) were not entirely consistent, and evidence in Chinese population is scarce. Moreover, the last meta-analysis did not examine the impact of metabolic variables on the adiponectin-T2D association. Therefore, we prospectively evaluated the adiponectin-T2D association among 571 T2D cases and 571 age-sex-matched controls nested within the Singapore Chinese Health Study (SCHS). Furthermore, we conducted an updated meta-analysis by searching prospective studies on Pubmed till September 2016. In the SCHS, the odds ratio of T2D, comparing the highest versus lowest tertile of adiponectin levels, was 0.30 (95% confidence interval: 0.17, 0.55) in the fully-adjusted model. The relation was stronger among heavier participants (body mass index ≥23 kg/m2) compared to their leaner counterparts (P for interaction = 0.041). In a meta-analysis of 34 prospective studies, the pooled relative risk was 0.53 (95% confidence interval: 0.47, 0.61) comparing the extreme tertiles of adiponectin with moderate heterogeneity (I 2 = 48.7%, P = 0.001). The adiponectin-T2D association remained unchanged after adjusting for inflammation and dyslipidemia markers, but substantially attenuated with adjustment for insulin sensitivity and/or glycaemia markers. Overall evidence indicates that higher adiponectin levels are associated with decreased T2D risk in Chinese and other populations.
UR - http://www.scopus.com/inward/record.url?scp=85040463040&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-18709-9
DO - 10.1038/s41598-017-18709-9
M3 - Article (Academic Journal)
C2 - 29321603
AN - SCOPUS:85040463040
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
M1 - 406
ER -