Abstract
The problem we address is adaptive obstacle navigation for autonomous robotic agents in an unknown or dynamically changing environment with a 2-D travel surface without the use of a global map. Two well known but hitherto apparently antithetical approaches to the problem, potential fields and BUG algorithms, are synthesised here. The best of both approaches is attempted by combining a Mind’s Eye with dynamic potential fields and BUG-like travel modes. The resulting approach, using only sensed goal directions and obstacle distances relative to the robot, is compatible with a wide variety of robots and provides robust BUG-like guarantees for successful navigation of obstacles. Simulation experiments are reported for both near-sighted (POTBUG) and far-sighted (POTSMOOTH) robots. The results are shown to support the theoretical design’s intentions that the guarantees persist in the face of significant sensor perturbation and that they may also be attained with smoother paths than existing BUG paths.
Translated title of the contribution | POTBUG: A Mind's Eye Approch to Providing BUG-Like Guarantees for Adaptive Obstacle Navigation Using Dynamic Potential Fields |
---|---|
Original language | English |
Pages (from-to) | 239-250 |
Journal | From animals to animats 9: Proceedings of the Ninth International Conference on Simulation of Adaptive Behaviour |
Publication status | Published - 2006 |
Bibliographical note
ISBN: 9783540386087Publisher: Springer Verlag
Name and Venue of Conference: From animals to animats 9: Proceedings of the Ninth International Conference on Simulation of Adaptive Behaviour
Other identifier: 2000582