Potential and limitations of NARX for defect detection in guided wave signals

Lily Tu*, Richard Pyle, Anthony J Croxford, Paul D Wilcox

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

5 Citations (Scopus)
86 Downloads (Pure)


Previously, a Nonlinear Autoregressive network with Exogenous input (NARX) demonstrated excellent performance, far outperforming an established method in optimal baseline subtraction, for defect detection in guided wave signals. The principle is to train a NARX network on defect-free guided wave signals to obtain a filter that predicts the next point from the previous points in the signal. The trained network is then applied to new measurement and the output subtracted from the measurement to reveal the presence of defect responses. However, as shown in this paper, the performance of the previous NARX implementation lacks robustness; it is highly dependent on the initialisation of the network and detection performance sometimes improves and then worsens over the course of training. It is shown that this is due to the previous NARX implementation only making predictions one point ahead. Subsequently, it is shown that multistep prediction using a newly proposed NARX structure creates a more robust training procedure, by enhancing the correlation between the training loss metric and the defect detection performance. The physical significance of the network structure is explored, allowing a simple hyperparameter tuning strategy to be used for determining the optimal structure. The overall detection performance of NARX is also improved by multi-step prediction, and this is demonstrated on defect responses at different times as well as on data from different sensor pairs, revealing the generalisability of this method.
Original languageEnglish
Number of pages13
Publication statusPublished - 8 Aug 2022

Bibliographical note

Funding Information:
The authors disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The work reported is a continuation of a pilot project (grant no. 100374) originally supported by Lloyd’s Register Foundation and the Alan Turing Institute Data-Centric Engineering Programme.

Publisher Copyright:
© The Author(s) 2022.


  • Baseline subtraction
  • Defect detection
  • Time series data prediction
  • Machine learning
  • NARX network
  • guided wave


Dive into the research topics of 'Potential and limitations of NARX for defect detection in guided wave signals'. Together they form a unique fingerprint.

Cite this