## Abstract

We prove that for all

*q*> 211, there always exists a primitive root*g*in the finite field**F**_{q}such that*Q*(*g*) is also a primitive root, where*Q*(*x*) =*ax*^{2}+*bx*+*c*is a quadratic polynomial with*a*;*b*;*c*∈**F***such that*_{q}*b*^{2}— 4*ac*≠ 0.Original language | English |
---|---|

Number of pages | 10 |

Journal | Mathematics of Computation |

Early online date | 30 Oct 2018 |

DOIs | |

Publication status | E-pub ahead of print - 30 Oct 2018 |