Abstract
Globally, most bridges fail due to hydrological causes such as scouring or flooding. Therefore, using a hydrological approach, this study proposes a methodology that contributes to prioritizing the intervention of bridges to prevent their collapse. Through an exhaustive literature review, an evaluation matrix subdivided into four dimensions was developed and a total of 18 evaluation parameters were considered, distributed as follows: four environmental, six technical, four social, and four economic. This matrix was applied to eight bridges with a history of hydrological problems in the same river and validated through semi-structured interviews with specialists. Data were collected through field visits, journalistic information, a review of the gauged basin’s historical hydrological flow rates, and consultations with the population. Modeling was then conducted, which considered the influence of gullies that discharge additional flow using HEC-HMS and HEC-RAS, before being calibrated. The application of the matrix, which is an optimal tool for prioritizing bridge interventions, revealed that five bridges have a high vulnerability with scores between 3 and 3.56, and three bridges have a medium vulnerability with scores between 2.75 and 2.94. The hydrological multidimensional approach, which can be adapted for similar studies, contributes to a better decision-making process for important infrastructure interventions such as riverine bridges.
Original language | English |
---|---|
Article number | 117 |
Pages (from-to) | 1-18 |
Number of pages | 18 |
Journal | Designs |
Volume | 7 |
Issue number | 5 |
Early online date | 12 Oct 2023 |
DOIs | |
Publication status | E-pub ahead of print - 12 Oct 2023 |