Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community

Hyoungsu Park, Daniel T. Cox, Andre R. Barbosa

Research output: Contribution to journalArticle (Academic Journal)peer-review

Abstract

Probabilistic Tsunami Hazard Analysis (PTHA) can be used to evaluate and quantify tsunami hazards for planning of integrated community-level preparedness, including mitigation of casualties and dollar losses, and to study resilient solutions for coastal communities. PTHA can provide several outputs such as the intensity measures (IMs) of the hazard quantified as a function of the recurrence interval of a tsunami event. In this paper, PTHA is developed using a logic tree approach based on numerical modeling for tsunami generated along the Cascadia Subduction Zone. The PTHA is applied to a community on the US Pacific Northwest Coast located in Newport, Oregon. Results of the PTHA are provided for five IMs: inundation depth, flow speed, specific momentum flux, arrival time, and duration of inundation. The first three IMs are predictors of tsunami impact on the natural and built environment, and the last two are useful for tsunami evacuation and immediate response planning. Results for the five IMs are presented as annual exceedance probability for sites within the community along several transects with varying bathymetric and topographic features. Community-level characteristics of spatial distribution of each IM for three recurrence intervals (500, 1000, 2500 year) are provided. Results highlight the different pattern of IMs between land and river transects, and significant magnitude variation of IMs due to complex bathymetry and topographic conditions at the various recurrence intervals. IMs show relatively higher magnitudes near the coastline, at the low elevation regions, and at the harbor channel. In addition, results indicate a positive correlation between inundation depth and other IMs near the coastline, but a weaker correlation at inland locations. Values of the Froude number ranged 0.1–1.0 over the inland inundation area. In general, the results in this study highlight the spatial differences in IMs and suggest the need to include multiple IMs for resilience planning for a coastal community subjected to tsunami hazards.

Original languageEnglish
Pages (from-to)1117–1139
JournalNatural Hazards
Volume94
DOIs
Publication statusPublished - 1 Aug 2018

Fingerprint Dive into the research topics of 'Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community'. Together they form a unique fingerprint.

Cite this