Abstract
The importance of carbohydrate recognition in biology, and the unusual challenges involved, have lead to great interest in mimicking saccharide-binding proteins such as lectins. In this review, we discuss the design of artificial carbohydrate receptors, focusing on those which work under natural (i.e. aqueous) conditions. The problem is intrinsically difficult because of the similarity between substrate (carbohydrate) and solvent (water) and, accordingly, progress has been slow. However, recent developments suggest that solutions can be found. In particular, the "temple" family of carbohydrate receptors show good affinities and excellent selectivities for certain all-equatorial substrates. One example is selective for O-linked beta-N-acetylglucosamine (GlcNAc, as in the O-GlcNAc protein modification), while another is specific for beta-cellobiosyl and closely related disaccharides. Both show roughly millimolar affinities, matching the strength of some lectin-carbohydrate interactions.
Original language | English |
---|---|
Pages (from-to) | 3177-3191 |
Number of pages | 15 |
Journal | Cellular and Molecular Life Sciences |
Volume | 66 |
Issue number | 19 |
DOIs | |
Publication status | Published - Oct 2009 |
Structured keywords
- Bristol BioDesign Institute
Keywords
- SYNTHETIC BIOLOGY