Projects per year
Abstract
Background: Quantitative molecular data from urine are rare in epidemiology and genetics. NMR spectroscopy could provide these data in high-throughput, and it has already been applied in epidemiological settings to analyse urine samples. However, quantitative protocols for large-scale applications are not available.
Methods: We describe in detail how to prepare urine samples and perform NMR experiments to obtain quantitative metabolic information. Semi-automated quantitative lineshape fitting analyses were set up for 43 metabolites and applied to data from various analytical test samples and from 1,004 individuals from a population-based epidemiological cohort. Novel analyses on how urine metabolites associate with quantitative serum NMR metabolomics data (61 metabolic measures; n=995) were performed. In addition, confirmatory genome-wide analyses of urine metabolites were conducted (n=578). The fully automated quantitative regression-based spectral analysis is demonstrated for creatinine and glucose (n= 4,548).
Results: Intra-assay metabolite variations were mostly <5% indicating high robustness and accuracy of the urine NMR spectroscopy methodology per se. Intra-individual metabolite variations were large, ranging from 6% to 194%. However, population-based inter-individual metabolite variations were even larger (from 14% to 1655%), providing a sound base for epidemiological applications. Metabolic associations between urine and serum were found clearly weaker than those within serum and within urine, indicating that urinary metabolomics data provide independent metabolic information. Two previous genome-wide hits for formate and 2-hydroxyisobutyrate were replicated at genome-wide significance.
Conclusions: Quantitative urine metabolomics data suggest broad novelty for systems epidemiology. A roadmap for an open access methodology is provided.
Methods: We describe in detail how to prepare urine samples and perform NMR experiments to obtain quantitative metabolic information. Semi-automated quantitative lineshape fitting analyses were set up for 43 metabolites and applied to data from various analytical test samples and from 1,004 individuals from a population-based epidemiological cohort. Novel analyses on how urine metabolites associate with quantitative serum NMR metabolomics data (61 metabolic measures; n=995) were performed. In addition, confirmatory genome-wide analyses of urine metabolites were conducted (n=578). The fully automated quantitative regression-based spectral analysis is demonstrated for creatinine and glucose (n= 4,548).
Results: Intra-assay metabolite variations were mostly <5% indicating high robustness and accuracy of the urine NMR spectroscopy methodology per se. Intra-individual metabolite variations were large, ranging from 6% to 194%. However, population-based inter-individual metabolite variations were even larger (from 14% to 1655%), providing a sound base for epidemiological applications. Metabolic associations between urine and serum were found clearly weaker than those within serum and within urine, indicating that urinary metabolomics data provide independent metabolic information. Two previous genome-wide hits for formate and 2-hydroxyisobutyrate were replicated at genome-wide significance.
Conclusions: Quantitative urine metabolomics data suggest broad novelty for systems epidemiology. A roadmap for an open access methodology is provided.
Original language | English |
---|---|
Pages (from-to) | 978-993 |
Number of pages | 16 |
Journal | International Journal of Epidemiology |
Volume | 48 |
Issue number | 3 |
Early online date | 25 Jan 2019 |
DOIs | |
Publication status | Published - 1 Jun 2019 |
Keywords
- genome-wide analyses
- Metabolomics
- multicentre
- open access
- serum
- urine
Fingerprint Dive into the research topics of 'Proof of concept for quantitative urine NMR metabolomics pipeline for large-scale epidemiology and genetics'. Together they form a unique fingerprint.
Projects
- 2 Active
-
IEU: MRC Integrative Epidemiology Unit Quinquennial renewal
Gaunt, L. F. & Davey Smith, G.
1/04/18 → 31/03/23
Project: Research
-