Quantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective

P. Regnier, A. Dale, S. Arndt, D.E. LaRowe, J. Mogollon, P. Van Cappellen

Research output: Contribution to journalArticle (Academic Journal)peer-review

146 Citations (Scopus)


Recent developments in the quantitative modeling of methane dynamics and anaerobic oxidation of methane (AOM) in marine sediments are critically reviewed. The first part of the review begins with a comparison of alternative kinetic models for AOM. The roles of bioenergetic limitations, intermediate compounds and biomass growth are highlighted. Next, the key transport mechanisms in multi-phase sedimentary environments affecting AOM and methane fluxes are briefly treated, while attention is also given to additional controls on methane and sulfate turnover, including organic matter mineralization, sulfur cycling and methane phase transitions. In the second part of the review, the structure, forcing functions and parameterization of published models of AOM in sediments are analyzed. The six-orders-of-magnitude range in rate constants reported for the widely used bimolecular rate law for AOM emphasizes the limited transferability of this simple kinetic model and, hence, the need for more comprehensive descriptions of the AOM reaction system. The derivation and implementation of more complete reaction models, however, are limited by the availability of observational data. In this context, we attempt to rank the relative benefits of potential experimental measurements that should help to better constrain AOM models. The last part of the review presents a compilation of reported depth-integrated AOM rates (ΣAOM). These rates reveal the extreme variability of ΣAOM in marine sediments. The model results are further used to derive quantitative relationships between ΣAOM and the magnitude of externally impressed fluid flow, as well as between ΣAOM and the depth of the sulfate–methane transition zone (SMTZ). This review contributes to an improved understanding of the global significance of the AOM process, and helps identify outstanding questions and future directions in the modeling of methane cycling and AOM in marine sediments.
Translated title of the contributionQuantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective
Original languageEnglish
Pages (from-to)105 - 130
Number of pages26
JournalEarth-Science Reviews
Publication statusPublished - Jan 2011

Bibliographical note

Publisher: Elsevier


Dive into the research topics of 'Quantitative Analysis of Anaerobic Oxidation of Methane (AOM) in Marine Sediments: A Modeling Perspective'. Together they form a unique fingerprint.

Cite this