31 Citations (Scopus)
319 Downloads (Pure)


The finite element method is used to approximately solve boundary value problems for differential equations. The method discretises the parameter space and finds an approximate solution by solving a large system of linear equations. Here we investigate the extent to which the finite element method can be accelerated using an efficient quantum algorithm for solving linear equations. We consider the representative general question of approximately computing a linear functional of the solution to a boundary value problem, and compare the quantum algorithm's theoretical performance with that of a standard classical algorithm -- the conjugate gradient method. Prior work had claimed that the quantum algorithm could be exponentially faster, but did not determine the overall classical and quantum runtimes required to achieve a predetermined solution accuracy. Taking this into account, we find that the quantum algorithm can achieve a polynomial speedup, the extent of which grows with the dimension of the partial differential equation. In addition, we give evidence that no improvement of the quantum algorithm could lead to a super-polynomial speedup when the dimension is fixed and the solution satisfies certain smoothness properties.
Original languageEnglish
Article number032324
Number of pages16
JournalPhysical Review A
Early online date17 Mar 2016
Publication statusPublished - Mar 2016


  • quantum algorithms


Dive into the research topics of 'Quantum algorithms and the finite element method'. Together they form a unique fingerprint.

Cite this