Quantum Theory of Reactive Scattering in Phase Space

Arseni Goussev, Roman Schubert, Holger Waalkens, Stephen Wiggins

Research output: Chapter in Book/Report/Conference proceedingChapter in a book

14 Citations (Scopus)

Abstract

We review recent results on quantum reactive scattering from a phase space perspective. The approach uses classical and quantum versions of normal form theory and the perspective of dynamical systems theory. Over the past ten years the classical normal form theory has provided a method for realizing the phase space structures that are responsible for determining reactions in high dimensional Hamiltonian systems. This has led to the understanding that a new (to reaction dynamics) type of phase space structure, a {\em normally hyperbolic invariant manifold} (or, NHIM) is the "anchor" on which the phase space structures governing reaction dynamics are built. The quantum normal form theory provides a method for quantizing these phase space structures through the use of the Weyl quantization procedure. We show that this approach provides a solution of the time-independent Schr\"odinger equation leading to a (local) S-matrix in a neighborhood of the saddle point governing the reaction. It follows easily that the quantization of the directional flux through the dividing surface with the properties noted above is a flux operator that can be expressed in a "closed form". Moreover, from the local S-matrix we easily obtain an expression for the cumulative reactio probability (CRP). Significantly, the expression for the CRP can be evaluated without the need to compute classical trajectories. The quantization of the NHIM is shown to lead to the activated complex, and the lifetimes of quantum states initialized on the NHIM correspond to the Gamov-Siegert resonances. We apply these results to the collinear nitrogen exchange reaction and a three degree-of-freedom system corresponding to an Eckart barrier coupled to two Morse oscillators.
Original languageEnglish
Title of host publicationUnstable States in the Continuous Spectra, Part I
Subtitle of host publicationAnalysis, Concepts, Methods, and Results
PublisherElsevier Inc.
Pages269-332
ISBN (Print)9780123809001
DOIs
Publication statusPublished - 28 Apr 2010

Publication series

NameAdvances in Quantum Chemistry
Volume60
ISSN (Print)0065-3276

Bibliographical note

59 pages, 13 figures

Keywords

  • quant-ph
  • math-ph
  • math.MP
  • physics.chem-ph

Fingerprint

Dive into the research topics of 'Quantum Theory of Reactive Scattering in Phase Space'. Together they form a unique fingerprint.

Cite this