Quantum tricritcal points in NbFe2

Sven Friedemann, Will J Duncan, Maximilian Hirschberger, Thomas W Bauer, Robert Küchler, Andreas Neubauer, Manuel Brando, Christian Pfleiderer, F Malte Grosche

Research output: Contribution to journalArticle (Academic Journal)peer-review

329 Downloads (Pure)

Abstract

Quantum critical points (QCPs) emerge when a 2nd order phase transition is suppressed to zero temperature. In metals the quantum fluctuations at such a QCP can give rise to new phases including unconventional superconductivity. Whereas antiferromagnetic QCPs have been studied in considerable detail ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs are avoided through either a change to 1st order transitions or through an intervening spin-density-wave (SDW) phase. Here, we study the prototype of the second case, NbFe2. We demonstrate that the phase diagram can be modelled using a two-order-parameter theory in which the putative FM QCP is buried within a SDW phase. We establish the presence of quantum tricritical points (QTCPs) at which both the uniform and finite q susceptibility diverge. The universal nature of our model suggests that such QTCPs arise naturally from the interplay between SDW and FM order and exist generally near a buried FM QCP of this type. Our results promote NbFe2 as the first example of a QTCP, which has been proposed as a key concept in a range of narrow-band metals, including the prominent heavy-fermion compound YbRh2Si2.
Original languageEnglish
Pages (from-to)62-67
Number of pages6
JournalNature Physics
Volume14
Early online date11 Sep 2017
DOIs
Publication statusE-pub ahead of print - 11 Sep 2017

Keywords

  • Electronic properties and materials
  • Phase transitions and critical phenomena

Fingerprint Dive into the research topics of 'Quantum tricritcal points in NbFe<sub>2</sub>'. Together they form a unique fingerprint.

Cite this