RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models

J. L. Widlowski*, B. Pinty, M. Clerici, Y. Dai, M. De Kauwe, K. De Ridder, A. Kallel, H. Kobayashi, T. Lavergne, W. Ni-Meister, A. Olchev, T. Quaife, S. Wang, W. Yang, Y. Yang, H. Yuan

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

61 Citations (Scopus)

Abstract

Remotely sensed, multiannual data sets of shortwave radiative surface fluxes are now available for assimilation into land surface schemes (LSSs) of climate and/or numerical weather prediction models. The RAMI4PILPS suite of virtual experiments assesses the accuracy and consistency of the radiative transfer formulations that provide the magnitudes of absorbed, reflected, and transmitted shortwave radiative fluxes in LSSs. RAMI4PILPS evaluates models under perfectly controlled experimental conditions in order to eliminate uncertainties arising from an incomplete or erroneous knowledge of the structural, spectral and illumination related canopy characteristics typical for model comparison with in situ observations. More specifically, the shortwave radiation is separated into a visible and near-infrared spectral region, and the quality of the simulated radiative fluxes is evaluated by direct comparison with a 3-D Monte Carlo reference model identified during the third phase of the Radiation transfer Model Intercomparison (RAMI) exercise. The RAMI4PILPS setup thus allows to focus in particular on the numerical accuracy of shortwave radiative transfer formulations and to pinpoint to areas where future model improvements should concentrate. The impact of increasing degrees of structural and spectral subgrid variability on the simulated fluxes is documented and the relevance of any thus emerging biases with respect to gross primary production estimates and shortwave radiative forcings due to snow and fire events are investigated.

Original languageEnglish
Article numberG02019
JournalJournal of Geophysical Research: Biogeosciences
Volume116
Issue number2
DOIs
Publication statusPublished - 1 Jun 2011

Fingerprint

Dive into the research topics of 'RAMI4PILPS: An intercomparison of formulations for the partitioning of solar radiation in land surface models'. Together they form a unique fingerprint.

Cite this