TY - JOUR
T1 - Rapid proton-detected NMR assignment for proteins with fast magic angle spinning
AU - Barbet-Massin, Emeline
AU - Pell, Andrew J.
AU - Retel, Joren S.
AU - Andreas, Loren B.
AU - Jaudzems, Kristaps
AU - Franks, W. Trent
AU - Nieuwkoop, Andrew J.
AU - Hiller, Matthias
AU - Higman, Victoria
AU - Guerry, Paul
AU - Bertarello, Andrea
AU - Knight, Michael J.
AU - Felletti, Michele
AU - Le Marchand, Tanguy
AU - Kotelovica, Svetlana
AU - Akopjana, Inara
AU - Tars, Kaspars
AU - Stoppini, Monica
AU - Bellotti, Vittorio
AU - Bolognesi, Martino
AU - Ricagno, Stefano
AU - Chou, James J.
AU - Griffin, Robert G.
AU - Oschkinat, Hartmut
AU - Lesage, Anne
AU - Emsley, Lyndon
AU - Herrmann, Torsten
AU - Pintacuda, Guido
PY - 2014/9/3
Y1 - 2014/9/3
N2 - Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide 2H/ 1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.
AB - Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide 2H/ 1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.
UR - http://www.scopus.com/inward/record.url?scp=84906862072&partnerID=8YFLogxK
U2 - 10.1021/ja507382j
DO - 10.1021/ja507382j
M3 - Article (Academic Journal)
C2 - 25102442
AN - SCOPUS:84906862072
SN - 0002-7863
VL - 136
SP - 12489
EP - 12497
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 35
ER -