Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management

Clazien de Vos, Ronald Petie, Ed G M van Klink, Manon Swanenburg

Research output: Contribution to journalArticle (Academic Journal)peer-review

3 Citations (Scopus)
46 Downloads (Pure)

Abstract

Increasing globalization and international trade contribute to rapid expansion of animal and human diseases. Hence, preparedness is warranted to prevent outbreaks of emerging and re-emerging diseases or detect outbreaks in an early stage. We developed a rapid risk assessment tool (RRAT) to inform risk managers on the incursion risk of multiple livestock diseases, about the main sources for incursion and the change of risk over time. RRAT was built as a relational database to link data on disease outbreaks worldwide, on introduction routes and on disease-specific parameters. The tool was parameterized to assess the incursion risk of 10 livestock diseases for the Netherlands by three introduction routes: legal trade in live animals, legal trade of animal products, and animal products illegally carried by air travelers. RRAT calculates a semi-quantitative risk score for the incursion risk of each disease, the results of which allow for prioritization. Results based on the years 2016-2018 indicated that the legal introduction routes had the highest incursion risk for bovine tuberculosis, whereas the illegal route posed the highest risk for classical swine fever. The overall incursion risk via the illegal route was lower than via the legal routes. The incursion risk of African swine fever increased over the period considered, whereas the risk of equine infectious anemia decreased. The variation in the incursion risk over time illustrates the need to update the risk estimates on a regular basis. RRAT has been designed such that the risk assessment can be automatically updated when new data becomes available. For diseases with high-risk scores, model results can be analyzed in more detail to see which countries and trade flows contribute most to the risk, the results of which can be used to design risk-based surveillance. RRAT thus provides a multitude of information to evaluate the incursion risk of livestock diseases at different levels of detail. To give risk managers access to all results of RRAT, an online visualization tool was built.
Original languageEnglish
Article number963758
Number of pages21
JournalFrontiers in Veterinary Science
Volume9
DOIs
Publication statusPublished - 7 Sept 2022

Bibliographical note

Funding Information:
Data from TRACES was made available by the Netherlands Food and Consumer Product Safety Authority (NVWA). We thank Marcel Spierenburg, Patrick van Dijk and Ruud Oberndorff for their support in retrieving these data. The R script used to obtain data on disease occurrence was developed by Dr. Robin Simons (APHA, United kingdom) with funding agreed through the Animal Health and Welfare ERA-NET consortium (https://www.anihwa.eu/) under the SPARE project (‘Spatial risk assessment framework for assessing exotic disease incursion and spread through Europe'). It was originally described in a conference contribution (Simons et al. Mighty models from little data grow: Estimating animal disease prevalence. Proceedings of the 2017 SVEPM conference, Inverness, Scotland. Pp. 166-175). We thank Michel Counotte (WBVR, Netherlands) for critically reading an earlier version of the manuscript.

Funding Information:
The development of RRAT was funded by the Dutch Ministry of Agriculture, Nature and Food Quality (KB-21-006-028, KB-37-003-033, WOT-01-003-078, and WOT-01-003-094) and Wageningen University & Research (KB-33-001-008-WBVR).

Publisher Copyright:
Copyright © 2022 de Vos, Petie, van Klink and Swanenburg.

Keywords

  • incursion risk, animal trade, animal products, travelers, livestock diseases, risk ranking, Netherlands

Fingerprint

Dive into the research topics of 'Rapid risk assessment tool (RRAT) to prioritize emerging and re-emerging livestock diseases for risk management'. Together they form a unique fingerprint.

Cite this