TY - JOUR
T1 - Rates of generation and destruction of the continental crust
T2 - implications for continental growth
AU - Dhuime, Bruno
AU - Hawkesworth, Chris J.
AU - Delavault, Hélène
AU - Cawood, Peter A.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Less than 25% of the volume of the juvenile continental crust preserved today is older than 3 Ga, there are no known rocks older than approximately 4 Ga, and yet a number of recent models of continental growth suggest that at least 60-80% of the present volume of the continental crust had been generated by 3 Ga. Such models require that large volumes of pre-3Ga crust were destroyed and replaced by younger crust since the late Archaean. To address this issue, we evaluate the influence on the rock record of changing the rates of generation and destruction of the continental crust at different times in Earth's history. We adopted a box model approach in a numerical model constrained by the estimated volumes of continental crust at 3Ga and the present day, and by the distribution of crust formation ages in the present-day crust. The data generated by the model suggest that new continental crust was generated continuously, but with a marked decrease in the net growth rate at approximately 3 Ga resulting in a temporary reduction in the volume of continental crust at that time. Destruction rates increased dramatically around 3 billion years ago, which may be linked to the widespread development of subduction zones. The volume of continental crust may have exceeded its present value by the mid/late Proterozoic. In this model, about 2.6-2.3 times of the present volume of continental crust has been generated since Earth's formation, and approximately 1.6-1.3 times of this volume has been destroyed and recycled back into the mantle.
AB - Less than 25% of the volume of the juvenile continental crust preserved today is older than 3 Ga, there are no known rocks older than approximately 4 Ga, and yet a number of recent models of continental growth suggest that at least 60-80% of the present volume of the continental crust had been generated by 3 Ga. Such models require that large volumes of pre-3Ga crust were destroyed and replaced by younger crust since the late Archaean. To address this issue, we evaluate the influence on the rock record of changing the rates of generation and destruction of the continental crust at different times in Earth's history. We adopted a box model approach in a numerical model constrained by the estimated volumes of continental crust at 3Ga and the present day, and by the distribution of crust formation ages in the present-day crust. The data generated by the model suggest that new continental crust was generated continuously, but with a marked decrease in the net growth rate at approximately 3 Ga resulting in a temporary reduction in the volume of continental crust at that time. Destruction rates increased dramatically around 3 billion years ago, which may be linked to the widespread development of subduction zones. The volume of continental crust may have exceeded its present value by the mid/late Proterozoic. In this model, about 2.6-2.3 times of the present volume of continental crust has been generated since Earth's formation, and approximately 1.6-1.3 times of this volume has been destroyed and recycled back into the mantle.
KW - Continental crust
KW - Continental growth
KW - Crustal evolution
KW - Plate tectonics
UR - http://www.scopus.com/inward/record.url?scp=85054085726&partnerID=8YFLogxK
U2 - 10.1098/rsta.2017.0403
DO - 10.1098/rsta.2017.0403
M3 - Article (Academic Journal)
C2 - 30275156
AN - SCOPUS:85054085726
VL - 376
JO - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
SN - 1364-503X
IS - 2132
M1 - 20170403
ER -