### Abstract

All of the six Painlev´e equations except the first have families of rational solutions, which are frequently important in applications. The third Painlevé equation in generic form depends on two parameters m and n, and it has rational solutions if and only if at least one of the parameters is an integer. We use known algebraic representations of the solutions to study numerically how the distributions of poles and zeros behave as n ∈ Z increases and how the patterns vary with m ∈ C. This study suggests that it is reasonable to consider the rational solutions in the limit of large n ∈ Z with m ∈ C being an auxiliary parameter. To analyze the rational solutions in this limit, algebraic techniques need to be supplemented by analytical ones, and the main new contribution of this paper is to develop a Riemann–Hilbert representation of the rational solutions of Painlevé-III that is amenable to asymptotic analysis. Assuming further that m is a half-integer, we derive from the Riemann–Hilbert representation a finite dimensional Hankel system for the rational solution in which n ∈ Z appears as an explicit parameter.

Original language | English |
---|---|

Pages (from-to) | 626-679 |

Number of pages | 54 |

Journal | Studies in Applied Mathematics |

Early online date | 25 Jun 2018 |

DOIs | |

Publication status | Published - 1 Nov 2018 |

## Fingerprint Dive into the research topics of 'Rational Solutions of the Painlevé-III Equation'. Together they form a unique fingerprint.

## Cite this

Bothner, T., Miller, P. D., & Sheng, Y. (2018). Rational Solutions of the Painlevé-III Equation.

*Studies in Applied Mathematics*, 626-679. https://doi.org/10.1111/sapm.12220