TY - JOUR
T1 - Real-time dynamic substructuring in a coupled oscillator-pendulum system
AU - Kyrychko, Y
AU - Blyuss, KB
AU - Gonzalez-Buelga, A
AU - Hogan, SJ
AU - Wagg, DJ
N1 - Publisher: The Royal Society
PY - 2006/4
Y1 - 2006/4
N2 - Real-time dynamic substructuring is a powerful testing method, which brings together analytical, numerical and experimental tools for the study of complex structures. It consists of replacing one part of the structure with a. numerical model; which is connected to the remainder of the physical structure (the substructure) by a transfer system. In order to provide reliable results, this hybrid system must remain stable during the whole test. A primary mechanism for destabilization of these type of systems is the delays which are naturally present in the transfer system. In thus paper, we apply the dynamic substructuring technique to a nonlinear system consisting of a pendulum attached to a mechanical oscillator. The oscillator is modelled numerically and the transfer system is an actuator. The system dynamics is governed by two coupled second-order neutral delay differential equations. We carry out local and global stability analyses of the system and identify the delay dependent stability boundaries for this type of system. We then perform a series of hybrid experimental tests for a pendulum-oscillator system. The results give excellent qualitative and quantitative agreement when compared to the analytical stability results.
AB - Real-time dynamic substructuring is a powerful testing method, which brings together analytical, numerical and experimental tools for the study of complex structures. It consists of replacing one part of the structure with a. numerical model; which is connected to the remainder of the physical structure (the substructure) by a transfer system. In order to provide reliable results, this hybrid system must remain stable during the whole test. A primary mechanism for destabilization of these type of systems is the delays which are naturally present in the transfer system. In thus paper, we apply the dynamic substructuring technique to a nonlinear system consisting of a pendulum attached to a mechanical oscillator. The oscillator is modelled numerically and the transfer system is an actuator. The system dynamics is governed by two coupled second-order neutral delay differential equations. We carry out local and global stability analyses of the system and identify the delay dependent stability boundaries for this type of system. We then perform a series of hybrid experimental tests for a pendulum-oscillator system. The results give excellent qualitative and quantitative agreement when compared to the analytical stability results.
U2 - 10.1098/rspa.2005.1624
DO - 10.1098/rspa.2005.1624
M3 - Article (Academic Journal)
SN - 1471-2946
VL - 462 (2068)
SP - 1271
EP - 1294
JO - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
JF - Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
ER -