Reanalysis of a 10-year record (2004-2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy

Stephan Peter Galos*, Christoph Klug, Fabien Maussion, Federico Covi, Lindsey Nicholson, Lorenzo Rieg, Wolfgang Gurgiser, Thomas Mölg, Georg Kaser

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

23 Citations (Scopus)

Abstract

Records of glacier mass balance represent important data in climate science and their uncertainties affect calculations of sea level rise and other societally relevant environmental projections. In order to reduce and quantify uncertainties in mass balance series obtained by direct glaciological measurements, we present a detailed reanalysis workflow which was applied to the 10-year record (2004 to 2013) of seasonal mass balance of Langenferner, a small glacier in the European Eastern Alps. The approach involves a methodological homogenization of available point values and the creation of pseudo-observations of point mass balance for years and locations without measurements by the application of a process-based model constrained by snow line observations. We examine the uncertainties related to the extrapolation of point data using a variety of methods and consequently present a more rigorous uncertainty assessment than is usually reported in the literature. Results reveal that the reanalyzed balance record considerably differs from the original one mainly for the first half of the observation period. For annual balances these misfits reach the order of > 300 kg m-2 and could primarily be attributed to a lack of measurements in the upper glacier part and to the use of outdated glacier outlines. For winter balances respective differences are smaller (up to 233 kg m-2) and they originate primarily from methodological inhomogeneities in the original series. Remaining random uncertainties in the reanalyzed series are mainly determined by the extrapolation of point data to the glacier scale and are on the order of ±79 kg m-2 for annual and ±52 kg m-2 for winter balances with values for single years/seasons reaching ±136 kg m-2. A comparison of the glaciological results to those obtained by the geodetic method for the period 2005 to 2013 based on airborne laser-scanning data reveals that no significant bias of the reanalyzed record is detectable.

Original languageEnglish
Pages (from-to)1417-1439
Number of pages23
JournalCryosphere
Volume11
Issue number3
DOIs
Publication statusPublished - 22 Jun 2017

Bibliographical note

Funding Information:
The work on this study was financed by Autonome Provinz Bozen - Südtirol, Abteilung Bildungsförderung, Universität und Forschung, and the Austrian Science Fund (FWF) grant V309-N26.

Publisher Copyright:
© Author(s) 2017.

Fingerprint

Dive into the research topics of 'Reanalysis of a 10-year record (2004-2013) of seasonal mass balances at Langenferner/Vedretta Lunga, Ortler Alps, Italy'. Together they form a unique fingerprint.

Cite this