Abstract
The photocatalytic reduction of carbon dioxide (CO(2)) on jet spray formed titanium dioxide (TiO(2)) was studied using light-emitting diode (LED) illumination centred at a wavelength of 388nm. In addition, the photocatalytic reduction of CO(2) under soft X-ray irradiation was also studied. Specifically, the experiments examined the reduction of CO(2) in a gaseous and liquid-gas system using residual gas analysis mass spectrometry. A photochemical reduction of CO(2) was observed over a course of 250min, with transformation to a major product, C(2)H(3)O(-) (ethenolate), until equilibrium was reached. The product was observed to be surface stabilised, with it reverting back to CO(2) over the course of 100min without illumination. A proposed free radical mechanism is presented for the formation of this product. A similar effect to that of UV illumination is also observed to occur under the influence of soft X-rays, which presents a potentially significant alternative method for the activation of TiO(2).
Translated title of the contribution | Reduction of carbon dioxide on jet spray formed titanium dioxide surfaces |
---|---|
Original language | English |
Journal | Journal of Hazardous Materials |
DOIs | |
Publication status | Published - Sep 2011 |