Projects per year
Abstract
Impact ionization in GaAs-based planar Gunn diodes is studied through electroluminescence (EL) analysis with the aim of reducing its magnitude by means of contact design and shaping, and thus enhance device performance and reliability. Designs in which the diode ohmic anode has an overhanging Schottky extension (composite anode contact) are shown to result in a significantly reduced amount of impact ionization, as compared with a simple ohmic contact design. The EL results are consistent with Monte Carlo simulations, which show a reduced impact ionization in composite anode contact devices due to a reduced electron density beneath the anode Schottky extension that, on the one hand, weakens the Gunn domain electric field and softens its variations near the anode edge, and, on the other hand, reduces the number of electrons capable of generating holes by impact ionization. A comparison between standard and composite anode contact approaches in terms of radio-frequency operation of the devices is made showing oscillations up to 109 GHz with an output power of -5 dBm in devices featuring the composite anode contact and no oscillations from all-ohmic contact devices. The findings reported in this paper may be useful not only for the design and the fabrication of planar Gunn diodes but also for other devices such as high-electron-mobility transistors where impact ionization can result in reliability limitations.
Original language | English |
---|---|
Pages (from-to) | 654-660 |
Number of pages | 7 |
Journal | IEEE Transactions on Electron Devices |
Volume | 59 |
Issue number | 3 |
Early online date | 20 Dec 2011 |
DOIs | |
Publication status | Published - Mar 2012 |
Bibliographical note
This article is a version that has been revised by the author to incorporate review suggestions, and which has been accepted by IEEE for publication in the journal, IEEE Transactions on Electron DevicesThe authors acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) through EP/H011366/1, EP/H011862/1, EP/H012532/1 and EP/H012966/1.
Research Groups and Themes
- CDTR
Keywords
- planar Gunn diodes
- terahertz
- impact ionisation
- composite anode contact
- anode design
Fingerprint
Dive into the research topics of 'Reduction of Impact Ionization in GaAs-Based Planar Gunn Diodes by Anode Contact Design'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Novel Thermal Management Concepts: High Power High Frequency Planar Gunn Diodes
Kuball, M. H. H. (Principal Investigator)
6/09/10 → 6/09/14
Project: Research