Projects per year
Abstract
1,2-Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3-bis(boronic esters), which can be subsequently oxidized to the corresponding secondary-secondary and secondary-tertiary 1,3-diols with full stereocontrol. The transformation was applied to a concise total synthesis of the 14-membered macrolactone, Sch 725674. The nine-step synthetic route also features a novel desymmetrizing enantioselective diboration of a divinyl carbinol derivative and high-yielding late-stage cross-metathesis and Yamaguchi macrolactonization reactions.
Original language | English |
---|---|
Pages (from-to) | 14663-14667 |
Number of pages | 5 |
Journal | Angewandte Chemie - International Edition |
Volume | 55 |
Issue number | 47 |
Early online date | 11 Nov 2016 |
DOIs | |
Publication status | Published - 14 Nov 2016 |
Keywords
- 1,3-diols
- diboration
- homologation
- lithiation
- Sch 725674
Fingerprint
Dive into the research topics of 'Regio- and Stereoselective Homologation of 1,2-Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3-Diols and Sch 725674'. Together they form a unique fingerprint.Projects
- 3 Finished
-
A 13C NMR Coldprobe to Underpin Chemistry Research.
Butts, C. P. (Principal Investigator)
28/02/14 → 29/11/17
Project: Research
-
3-month Core Capability for Chemistry Research
Crosby, J. (Principal Investigator)
1/01/13 → 1/04/13
Project: Research
-
Changing the Synthesis Landscape with Boron at the Helm: from Chiral Organometallics to Assembly Line Synthesis
Aggarwal, V. K. (Principal Investigator)
14/05/12 → 13/01/18
Project: Research