Skip to content

Renal endothelial protein C receptor expression and shedding during diabetic nephropathy

Research output: Contribution to journalArticle

  • L Lattenist
  • P Ochodnický
  • M Ahdi
  • N Claessen
  • J C Leemans
  • S C Satchell
  • S Florquin
  • V E Gerdes
  • J J T H Roelofs
Original languageEnglish
Pages (from-to)1171-1182
Number of pages12
JournalJournal of Thrombosis and Haemostasis
Volume14
Issue number6
Early online date6 May 2016
DOIs
DateAccepted/In press - 14 Jan 2016
DateE-pub ahead of print - 6 May 2016
DatePublished (current) - Jun 2016

Abstract

UNLABELLED: Essentials Endothelial protein C receptor (EPCR) promotes diabetic nephropathy (DN) outcome improvement. Renal expression and shedding of EPCR were measured in diabetic patients with or without DN. Inhibition of metalloproteinase-driven EPCR shedding restored glomerular endothelium phenotype. EPCR shedding through metalloproteinase ADAM17 contributes to the worsening of DN.

SUMMARY: Background Diabetic nephropathy (DN) represents the leading cause of end-stage renal disease. The endothelial protein C receptor (EPCR) and its ligand (activated protein C) have been shown to ameliorate the phenotype of DN in mice. EPCR activity can be regulated by proteolytic cleavage involving ADAMs, yielding a soluble form of EPCR (sEPCR). Objective To characterize the renal expression and shedding of EPCR during DN. Methods EPCR levels were measured in plasma, urine and biopsy samples of diabetic patients with (n = 73) or without (n = 63) DN. ADAM-induced cleavage of EPCR was investigated in vitro with a human glomerular endothelium cell line. Results DN patients showed higher plasma and urinary levels of sEPCR than diabetic controls (112.2 versus 135.2 ng mL(-1) and 94.35 versus 140.6 ng mL(-1) , respectively). Accordingly, glomerular endothelial EPCR expression was markedly reduced in patients with DN, and this was associated with increased glomerular expression of ADAM-17 and ADAM-10. In vitro, EPCR shedding was induced by incubation of glomerular endothelium in high-glucose medium, and this shedding was suppressed by ADAM-17 inhibition or silencing, which led to improved vascular endothelial cadherin (VE-cadherin) expression and reduced mRNA expression of transforming growth factor (TGF)-β. In addition, EPCR silencing led to minor effects on VE-cadherin but to a significant increase in TGF-β mRNA expression. Conclusion Inhibition of ADAM-driven glomerular EPCR shedding restored the endothelial phenotype of glomerular endothelium, whereas EPCR silencing led to enhanced expression of TGF-β, a marker of endothelial-mesenchymal transition. These findings demonstrate that EPCR shedding driven by ADAMs contributes to the worsening of DN.

    Research areas

  • ADAM-17; albuminuria; diabetes complications; diabetic nephropathy; endothelial cell protein C receptor; hyperglycemia

Documents

DOI

View research connections

Related faculties, schools or groups