Abstract
The relaxation pathways of silyl-modified guanosine nucleoside monomers (G) and double-hydrogen-bonded homodimers (GG1) are compared in chloroform solution after 260-nm ultraviolet excitation. Transient absorption spectra support two previously reported relaxation pathways for the monomer with time constants of 210 ± 20 fs and 2.6 ± 0.1 ps. These pathways are associated with bifurcated approach to a seam of conical intersections between the excited 1ππ* 1La state and the ground electronic state. In the homodimer, an increase in the larger time constant to 18 ± 2 ps is attributed to slower passage through the minimum energy region of the 1ππ* state. A further time constant of 70 ± 10 fs indicates wavepacket evolution out of the 1ππ* state Franck-Condon region. A slow component of recovery of ground-state GG1 is proposed to result either from relaxation of the product of inter-base electron-driven proton transfer, or from the lowest triplet state (3ππ*, T1).
| Original language | English |
|---|---|
| Pages (from-to) | 480-492 |
| Number of pages | 13 |
| Journal | Chemical Physics |
| Volume | 515 |
| Early online date | 18 Jul 2018 |
| DOIs | |
| Publication status | Published - 14 Nov 2018 |
Research Groups and Themes
- Physical & Theoretical
Fingerprint
Dive into the research topics of 'Resolving the excited state relaxation dynamics of guanosine monomers and hydrogen-bonded homodimers in chloroform solution'. Together they form a unique fingerprint.Equipment
-
Research Data Storage Facility (RDSF)
Alam, S. R. (Manager), Williams, D. A. G. (Manager) & Eccleston, P. E. (Manager)
IT ServicesFacility/equipment: Facility
-