Abstract
Since 8th March 2020 up to the time of writing, we have been producing near real-time weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for all countries with evidence of sustained transmission, shared online. We also developed a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a 4-week horizon. Here we present a retrospective evaluation of the forecasts produced between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of the forecasts produced in real-time using relative error, coverage probability, and comparisons with null models. During the 39-week period covered by this study, both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our models shows that simple transmission models calibrated using routine disease surveillance data can reliably capture the epidemic trajectory in multiple countries. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax public health measures.
Original language | English |
---|---|
Article number | e0286199 |
Journal | PLoS ONE |
Volume | 18 |
Issue number | 10 |
DOIs | |
Publication status | Published - 18 Oct 2023 |
Bibliographical note
Funding Information:The authors acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. JW acknowledges research funding from the Wellcome Trust (grant 102169/Z/13/Z). SB acknowledges funding from the Wellcome Trust (219415). This study is partially funded by the National Institute for Health and Care Research (NIHR) Health Protection Research Unit in Modelling and Health Economics, a partnership between Public Health England, Imperial College London and LSHTM (grant code NIHR200908); and acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. The views expressed are those of the author(s) and not necessarily those of the NIHR, Public Health England or the Department of Health and Social Care. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2023 Bhatia et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.