Riesz-type inequalities and maximum flux exchange flow

Research output: Contribution to journalArticle (Academic Journal)

82 Downloads (Pure)


Let $D$ stand for the open unit disc in $\mathbb{R}^d$ ($d\geq 1$) and $(D,\,\mathscr{B},\,m)$ for the usual Lebesgue measure space on $D$. Let $\mathscr{H}$ stand for the real Hilbert space $L^2(D,\,m)$ with standard inner product $(\cdot,\,\cdot)$. The letter $G$ signifies the Green operator for the (non-negative) Dirichlet Laplacian $-\Delta$ in $\mathscr{H}$ and $\psi$ the torsion function $G\,\chi_D$. We pose the following problem. Determine the optimisers for the shape optimisation problem \[ \alpha_t:=\sup\Big\{(G\chi_A,\chi_A):\,A\subseteq D\text{is open and}(\psi,\chi_A)\leq t\,\Big\} \] where the parameter $t$ lies in the range $0t
Original languageEnglish
Publication statusUnpublished - 18 Nov 2011


  • math.AP
  • shape optimisation


Dive into the research topics of 'Riesz-type inequalities and maximum flux exchange flow'. Together they form a unique fingerprint.

Cite this