Abstract
BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials.
METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674.
FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation.
INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials.
FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca.
Original language | English |
---|---|
Pages (from-to) | 99-111 |
Number of pages | 13 |
Journal | Lancet |
Volume | 397 |
Issue number | 10269 |
Early online date | 8 Dec 2020 |
DOIs | |
Publication status | Published - 9 Jan 2021 |
Bibliographical note
The acceptance date for this record is provisional and based upon the month of publication for the article.Funding Information:
This Article was funded by UK Research and Innovation, NIHR, Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca. The authors dedicate this paper to the many healthcare workers who have lost their lives during the pandemic. This report is independent research funded by the UK National Institute for Health Research, UK Research and Innovation, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'OR, the Brava and Telles Foundation, and the South African Medical Research Council. We are grateful to the NIHR infrastructure provided through the NIHR Biomedical Research Centres and the NIHR Clinical Research Network at the UK study sites. The views expressed in this publication are those of the author(s) and not necessarily those of the National Institute for Health Research or the Department of Health and Social Care. PMF received funding from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (finance code 001). The authors are grateful to the volunteers who participated in this study. The authors are grateful to the senior management at AstraZeneca for facilitating and funding the manufacture of the AZD1222 vaccine candidate and for financial support for expansion of the Oxford sponsored clinical trials in Brazil. AstraZeneca reviewed the data from the study and the final manuscript prior to submission, but the authors retained editorial control.
Funding Information:
This Article was funded by UK Research and Innovation, NIHR, Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D’Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca. The authors dedicate this paper to the many healthcare workers who have lost their lives during the pandemic. This report is independent research funded by the UK National Institute for Health Research, UK Research and Innovation, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D’OR, the Brava and Telles Foundation, and the South African Medical Research Council. We are grateful to the NIHR infrastructure provided through the NIHR Biomedical Research Centres and the NIHR Clinical Research Network at the UK study sites. The views expressed in this publication are those of the author(s) and not necessarily those of the National Institute for Health Research or the Department of Health and Social Care. PMF received funding from the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazil (finance code 001). The authors are grateful to the volunteers who participated in this study. The authors are grateful to the senior management at AstraZeneca for facilitating and funding the manufacture of the AZD1222 vaccine candidate and for financial support for expansion of the Oxford sponsored clinical trials in Brazil. AstraZeneca reviewed the data from the study and the final manuscript prior to submission, but the authors retained editorial control.
Funding Information:
Oxford University has entered into a partnership with AstraZeneca for further development of ChAdOx1 nCoV-19. SCG is co-founder of Vaccitech (collaborators in the early development of this vaccine candidate) and named as an inventor on a patent covering use of ChAdOx1-vectored vaccines and a patent application covering this SARS-CoV-2 vaccine (PCT/GB2012/000467). TL is named as an inventor on a patent application covering this SARS-CoV-2 vaccine and was a consultant to Vaccitech for an unrelated project, during the conduct of the study. PMF is a consultant to Vaccitech during the conduct of the study. AJP is chair of the UK Department of Health and Social Care's (DHSC) Joint Committee on Vaccination & Immunisation (JCVI), but does not participate in discussions on COVID-19 vaccines, and is a member of WHO's SAGE. AJP is a National Institute for Health Research (NIHR) Senior Investigator. The views expressed in this Article do not necessarily represent the views of the DHSC, JCVI, NIHR, or WHO. AVSH reports personal fees from Vaccitech, outside of the submitted work, and has a patent on ChAdOx1 licensed to Vaccitech (PCT/GB2012/000467), and might benefit from royalty income to the University of Oxford from sales of this vaccine by AstraZeneca and sublicensees. MS reports grants from NIHR and non-financial support from AstraZeneca, during the conduct of the study; and grants from Janssen, GlaxoSmithKline, Medimmune, Novavax, and MCM and grants and non-financial support from Pfizer, outside of the submitted work. CG reports personal fees from the Duke Human Vaccine Institute, outside of the submitted work. ADD reports grants and personal fees from AstraZeneca, outside of the submitted work. AF is a member of the JCVI and chair of the WHO European Technical Advisory Group of Experts. AF declares research grants from Pfizer, GlaxoSmithKline, Sanofi, Merck Sharp & Dohme, and Valneva, outside of the submitted work. JV, TLV, and IH are employees of AstraZeneca. The other authors declare no competing interests.
Publisher Copyright:
© 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
Research Groups and Themes
- Covid19
Keywords
- Adolescent
- Adult
- Aged
- Brazil
- COVID-19/prevention & control
- COVID-19 Vaccines/adverse effects
- Double-Blind Method
- Female
- Humans
- Male
- Middle Aged
- Single-Blind Method
- South Africa
- Treatment Outcome
- United Kingdom
- Young Adult
Fingerprint
Dive into the research topics of 'Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK'. Together they form a unique fingerprint.Profiles
-
Professor Adam H R Finn
- Bristol Medical School (PHS) - Professor of Paediatrics
- Bristol Population Health Science Institute
- Health Protection Research Unit (HPRU)
- Infection and Immunity
- Bristol Children's Vaccine Centre
Person: Academic , Member, Group lead