Abstract
The employment of industrial by-products with pozzolanic properties (e.g., fly ash) is a viable technique for soil stabilization purposes when a more advantageous environmental performance is sought. For routine engineering purposes, compacted soil-binder mixes are considered as isotropic materials, even though a rather cross-anisotropic material structure may be induced during the preparation process. A series of experimental shear tests at constant mean effective stress on laboratory compacted sand-fly ash-lime soil samples has been performed under drained conditions in a true triaxial apparatus. The influence of the intermediate principal stress and the effect of deviatoric linear stress path directions on the mechanical response were particularly investigated. The relative magnitude of the intermediate principal stress ratio, expressed in terms of the b-value, b=(σ2′-σ3′)/(σ1′-σ3′), showed significant effects on the stress-strain, volumetric, and strength characteristics of the compacted sand-fly ash-lime soil. The latter decreases as b-value increases. However, different deviatoric linear stress-controlled paths conducted at a constant b-value revealed a rather isotropic response, which seemed to suggest that the cementation is erasing the inherent material anisotropy. Finally, the tested samples fitted well into the both Willam and Warnke and Kim-Lade failure criteria.
Original language | English |
---|---|
Article number | 04022059 |
Journal | Journal of Materials in Civil Engineering |
Volume | 34 |
Issue number | 5 |
Early online date | 23 Feb 2022 |
DOIs | |
Publication status | Published - 1 May 2022 |
Bibliographical note
Funding Information:Carina Silvani acknowledges the support of the Brazilian Research Council CNPq (Grant No. 205304/2014-1). The authors also gratefully acknowledge the support provided by the UK Royal Academy of Engineering under the Newton Research Collaboration Programme (Grant reference: NRCP1415/2/2). The authors also wish to explicit their appreciation to FAPERGS/CNPq 12/2014–PRO-NEX (Project No. 16/2551-0000469-2), MCT-CNPq (Editais INCT-REAGEO, Universal & Produtividade em Pesquisa) and MEC-CAPES (PROEX) for the support to the research group. The authors would like to thank Mr. Gary Martin for his assistance with all the experimental setup matters.
Publisher Copyright:
© 2022 American Society of Civil Engineers.