Skip to content

SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

Research output: Contribution to journalArticle

  • P. Lognonné
  • W. B. Banerdt
  • D. Giardini
  • W. T. Pike
  • U. Christensen
  • P. Laudet
  • S. de Raucourt
  • P. Zweifel
  • S. Calcutt
  • M. Bierwirth
  • K. J. Hurst
  • F. Ijpelaan
  • J. W. Umland
  • R. Llorca-Cejudo
  • S. A. Larson
  • R. F. Garcia
  • S. Kedar
  • B. Knapmeyer-Endrun
  • D. Mimoun
  • A. Mocquet
  • M. P. Panning
  • R. C. Weber
  • A. Sylvestre-Baron
  • G. Pont
  • N. Verdier
  • L. Kerjean
  • L. J. Facto
  • V. Gharakanian
  • J. E. Feldman
  • T. L. Hoffman
  • D. B. Klein
  • K. Klein
  • N. P. Onufer
  • J. Paredes-Garcia
  • M. P. Petkov
  • S. E. Smrekar
  • M. Drilleau
  • T. Gabsi
  • T. Nebut
  • O. Robert
  • S. Tillier
  • C. Moreau
  • M. Parise
  • G. Aveni
  • S. Ben Charef
  • Y. Bennour
  • T. Camus
  • P. A. Dandonneau
  • C. Desfoux
  • B. Lecomte
  • O. Pot
  • P. Revuz
  • D. Mance
  • J. tenPierick
  • N. E. Bowles
  • C. Charalambous
  • J. Hurley
  • R. Irshad
  • Huafeng Liu
  • I. M. Standley
  • T. Warren
  • M. Eberhardt
  • A. Kramer
  • W. Kühne
  • E.-P. Miettinen
  • M. Monecke
  • C. Aicardi
  • M. André
  • J. Baroukh
  • A. Borrien
  • A. Bouisset
  • P. Boutte
  • K. Brethomé
  • C. Brysbaert
  • T. Carlier
  • M. Deleuze
  • J. M. Desmarres
  • D. Dilhan
  • C. Doucet
  • D. Faye
  • N. Faye-Refalo
  • R. Gonzalez
  • C. Imbert
  • C. Larigauderie
  • E. Locatelli
  • L. Luno
  • F. Mialhe
  • J. M. Mouret
  • M. Nonon
  • Y. Pahn
  • A. Paillet
  • P. Pasquier
  • G. Perez
  • R. Perez
  • L. Perrin
  • B. Pouilloux
  • A. Rosak
  • I. Savin de Larclause
  • J. Sicre
  • M. Sodki
  • N. Toulemont
  • B. Vella
  • C. Yana
  • F. Alibay
  • O. M. Avalos
  • M. A. Balzer
  • P. Bhandari
  • E. Blanco
  • B. D. Bone
  • J. C. Bousman
  • P. Bruneau
  • F. J. Calef
  • R. J. Calvet
  • S. A. D’Agostino
  • G. de los Santos
  • R. G. Deen
  • R. W. Denise
  • J. Ervin
  • N. W. Ferraro
  • H. E. Gengl
  • F. Grinblat
  • D. Hernandez
  • L. Khachikyan
  • S. M. Madzunkov
  • I. G. Mikellides
  • W. Raff
  • J. E. Singer
  • C. M. Sunday
  • J. F. Villalvazo
  • D. Banfield
  • J. A. Rodriguez-Manfredi
  • A. Trebi-Ollennu
  • J. N. Maki
  • E. Beucler
  • M. Böse
  • C. Bonjour
  • J. L. Berenguer
  • S. Ceylan
  • J. Clinton
  • V. Conejero
  • I. Daubar
  • V. Dehant
  • P. Delage
  • F. Euchner
  • I. Estève
  • L. Fayon
  • L. Ferraioli
  • J. Gagnepain-Beyneix
  • M. Golombek
  • T. Kawamura
  • B. Kenda
  • P. Labrot
  • C. Pardo
  • C. Perrin
  • L. Pou
  • A. Sauron
  • D. Savoie
  • S. Stähler
  • E. Stutzmann
  • N. A. Teanby
  • J. Tromp
  • M. van Driel
  • M. Wieczorek
  • R. Widmer-Schnidrig
  • J. Wookey
Original languageEnglish
Number of pages170
JournalSpace Science Reviews
Issue number12
Early online date28 Jan 2019
DateAccepted/In press - 29 Dec 2018
DateE-pub ahead of print - 28 Jan 2019
DatePublished (current) - 28 Jan 2019


By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of ∼2500$\sim 2500$at 1 Hz and ∼200000$\sim 200\,000$at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of Mw∼3$M_{{w}} \sim 3$at 40∘$40^{\circ}$epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.

Download statistics

No data available



  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via Springer at DOI: 10.1007/s11214-018-0574-6. Please refer to any applicable terms of use of the publisher.

    Final published version, 32 MB, PDF document

    Licence: CC BY


View research connections

Related faculties, schools or groups