Abstract
The sense of touch is fundamental to human dexterity. When mimicked in robotic touch, particularly by use of soft optical tactile sensors, it suffers from distortion due to motion-dependent shear. This complicates tactile tasks like shape reconstruction and exploration that require information about contact geometry. In this work, we pursue a semi-supervised approach to remove shear while preserving contact-only information. We validate our approach by showing a match between the model-generated unsheared images with their counterparts from vertically tapping onto the object. The model-generated unsheared images give faithful reconstruction of contact-geometry otherwise masked by shear, along with robust estimation of object pose then used for sliding exploration and full reconstruction of several planar shapes. We show that our semi-supervised approach achieves comparable performance to its fully supervised counterpart across all validation tasks with an order of magnitude less supervision. The semi-supervised method is thus more computational and labeled sample-efficient. We expect it will have broad applicability to wide range of complex tactile exploration and manipulation tasks performed via a shear-sensitive sense of touch.
Original language | English |
---|---|
Title of host publication | IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 |
Publisher | Institute of Electrical and Electronics Engineers (IEEE) |
Pages | 2092-2098 |
Number of pages | 7 |
ISBN (Electronic) | 9781665479271 |
DOIs | |
Publication status | Published - 2022 |
Event | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan Duration: 23 Oct 2022 → 27 Oct 2022 |
Publication series
Name | IEEE International Conference on Intelligent Robots and Systems |
---|---|
Volume | 2022-October |
ISSN (Print) | 2153-0858 |
ISSN (Electronic) | 2153-0866 |
Conference
Conference | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 |
---|---|
Country/Territory | Japan |
City | Kyoto |
Period | 23/10/22 → 27/10/22 |
Bibliographical note
Funding Information:*This work was supported by an award from the Leverhulme Trust on “A biomimetic forebrain for robot touch” (RL-2016-39) 1The authors are with the Department of Engineering Mathematics and the Bristol Robotics Laboratory, University of Bristol, UK
Publisher Copyright:
© 2022 IEEE.