Sensitivity of Greenland ice sheet projections to model formulations

Heiko Goelzer, Philippe Huybrechts, Johannes Fürst, Faezeh M. Nick, M.L. Andersen, Tamsin L Edwards, Xavier Fettweis, A J Payne, Sarah R Shannon

Research output: Contribution to journalArticle (Academic Journal)peer-review

78 Citations (Scopus)

Abstract

Physically based projections of the Greenland ice sheet contribution to future sea-level change are subject to uncertainties of the atmospheric and oceanic climatic forcing and to the formulations within the ice flow model itself. Here a higher-order, three-dimensional thermomechanical ice flow model is used, initialized to the present-day geometry. The forcing comes from a high-resolution regional climate model and from a flowline model applied to four individual marine-terminated glaciers, and results are subsequently extended to the entire ice sheet. The experiments span the next 200 years and consider climate scenario SRES A1B. The surface mass-balance (SMB) scheme is taken either from a regional climate model or from a positive-degree-day (PDD) model using temperature and precipitation anomalies from the underlying climate models. Our model results show that outlet glacier dynamics only account for 6–18% of the sea-level contribution after 200 years, confirming earlier findings that stress the dominant effect of SMB changes. Furthermore, interaction between SMB and ice discharge limits the importance of outlet glacier dynamics with increasing atmospheric forcing. Forcing from the regional climate model produces a 14–31% higher sea-level contribution compared to a PDD model run with the same parameters as for IPCC AR4.
Original languageEnglish
Pages (from-to)733-749
Number of pages17
JournalJournal of Glaciology
Volume59
Issue number216
DOIs
Publication statusPublished - 1 Aug 2013

Fingerprint Dive into the research topics of 'Sensitivity of Greenland ice sheet projections to model formulations'. Together they form a unique fingerprint.

Cite this