TY - JOUR
T1 - Shape dependent phoretic propulsion of slender active particles
AU - Ibrahim, Yahaya
AU - Golestanian, Ramin
AU - Liverpool, Tanniemola
PY - 2018/3
Y1 - 2018/3
N2 - We theoretically study the self-propulsion of a thin (slender) colloid driven by asymmetric chemical reactions on its surface at vanishing Reynolds number. Using the method of matched asymptotic expansions, we obtain the colloid self-propulsion velocity as a function of its shape and surface physico-chemical properties. The mechanics of self-phoresis for rod-like swimmers has a richer spectrum of behaviours than spherical swimmers due to the presence of two small length scales, the slenderness of the rod and the width of the slip layer. This leads to subtleties in taking the limit of vanishing slenderness. As a result, even for very thin rods, the distribution of curvature along the surface of the swimmer, namely its shape, plays a surprising role in determining the efficiency of propulsion. We find that thin cylindrical self-phoretic swimmers with blunt ends move faster than thin prolate spheroid shaped swimmers with the same aspect ratio.
AB - We theoretically study the self-propulsion of a thin (slender) colloid driven by asymmetric chemical reactions on its surface at vanishing Reynolds number. Using the method of matched asymptotic expansions, we obtain the colloid self-propulsion velocity as a function of its shape and surface physico-chemical properties. The mechanics of self-phoresis for rod-like swimmers has a richer spectrum of behaviours than spherical swimmers due to the presence of two small length scales, the slenderness of the rod and the width of the slip layer. This leads to subtleties in taking the limit of vanishing slenderness. As a result, even for very thin rods, the distribution of curvature along the surface of the swimmer, namely its shape, plays a surprising role in determining the efficiency of propulsion. We find that thin cylindrical self-phoretic swimmers with blunt ends move faster than thin prolate spheroid shaped swimmers with the same aspect ratio.
KW - Synthetic biology
UR - https://arxiv.org/abs/1711.06126
U2 - 10.1103/PhysRevFluids.3.033101
DO - 10.1103/PhysRevFluids.3.033101
M3 - Article (Academic Journal)
VL - 3
JO - Physical Review Fluids
JF - Physical Review Fluids
SN - 2469-990X
IS - 3
M1 - 033101
ER -