Abstract

Psoroptic mange (sheep scab), caused by the parasitic mite, Psoroptes ovis, is an important disease of sheep worldwide. It causes chronic animal welfare issues and economic losses. Eradication of scab has proved impossible in many sheep-rearing areas and recent reports of resistance to macrocyclic lactones, a key class of parasiticide, highlight the importance of improving approaches to scab management. To allow this, the current study aimed to develop a stochastic spatial metapopulation model for sheep scab transmission which can be adapted for use in any geographical region, exhibited here using data for Great Britain. The model uses agricultural survey and sheep movement data to geo-reference farms and capture realistic movement patterns. Reported data on sheep scab outbreaks from 1973-1991 were used for model fitting with Sequential Monte Carlo Approximate Bayesian Computation methods. The outbreak incidence predicted by the model was from the same statistical distribution as the reported outbreak data (χ^2= 115.3, p = 1) and the spatial location of sheep scab outbreaks predicted was positively correlated with the observed outbreak data by county (τ=0.55, p < 0.001), confirming that the model developed is able to accurately capture the number of farms infected in a year, the seasonality of scab incidence and the spatial patterns seen in the data. This model gives insight into the transmission dynamics of sheep scab and will allow the exploration of more effective control strategies.
Original languageEnglish
JournalVeterinary Research
Publication statusAccepted/In press - 15 Mar 2021

Keywords

  • control
  • disease
  • ectoparasite
  • Psoroptes ovis
  • sheep movement
  • transmission dynamics

Fingerprint Dive into the research topics of 'Sheep scab transmission: a spatially explicit dynamic metapopulation model'. Together they form a unique fingerprint.

Cite this