Ship Wake Detection in X-band SAR Images Using Sparse GMC Regularization

Oktay Karakus, Alin Achim

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

13 Citations (Scopus)

Abstract

Ship wakes have crucial importance in the analysis of SAR images of the sea surface due to the information they carry about vessels. Since ship wakes mostly appear as lines in SAR images, line detection methods have been widely used for their identification. In the literature, common practice for detecting ship wakes is to use Hough and Radon transforms in which bright (dark) lines appear as peaks (troughs) points. In this paper, the ship wake detection problem is addressed as a Radon transform based inverse problem with a sparse non-convex generalized minimax concave (GMC) regularization. Despite being a non-convex regularizer, the GMC penalty enforces the cost function to be convex. The solution to this convex cost function optimisation is obtained in a Bayesian formulation and the lines are recovered as maximum a posteriori (MAP) point estimates with a sparse GMC based prior. The detection procedure consists of a restricted area search in the Radon domain and the validation of candidate wakes. The performance of the proposed method is demonstrated in TerraSAR-X images of five different ships and with a total of 19 visible ship wakes. The results show a successful detection performance of up to 84% for the utilised images.
Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages2182-2186
Number of pages5
ISBN (Electronic)9781479981311
DOIs
Publication statusPublished - 16 Apr 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Keywords

  • GMC Regularization
  • Inverse Problem
  • MAP Estimation
  • Ship Wake Detection

Fingerprint

Dive into the research topics of 'Ship Wake Detection in X-band SAR Images Using Sparse GMC Regularization'. Together they form a unique fingerprint.

Cite this