Simulation of transonic flutter and active shockwave control

L Djayapertapa, CB Allen

Research output: Contribution to journalArticle (Academic Journal)

2 Citations (Scopus)

Abstract

Transonic flutter and active flap control, in two dimensions, are simulated by coupling independent structural dynamic and inviscid aerodynamic models, in the time domain. A flight control system, to actively control the trailing edge flap motion, has also been incorporated and, since this requires perfect synchronisation of fluid, structure and control signal, the “strong� coupling approach is adopted. The computational method developed is used to perform transonic aeroelastic and aeroservoelastic calculations in the time domain, and used to compute stability (flutter) boundaries of 2D wing sections. Open and closed loop simulations show that active control can successfully suppress flutter and results in a significant increase in the allowable speed index in the transonic regime. It is also shown that active control is still effective when there is free-play in the control surface hinge. Flowfield analysis is used to investigate the nature of flutter and active control, and the fundamental importance of shock wave motion in the vicinity of the flap is demonstrated.
Translated title of the contributionSimulation of transonic flutter and active shockwave control
Original languageEnglish
Pages (from-to)413 - 443
JournalInternational Journal of Numerical Methods for Heat & Fluid Flow
VolumeVol.14, No.4
DOIs
Publication statusPublished - 2004

Bibliographical note

Publisher: Emerald Group Publishing Ltd
Other: Special Issue

Fingerprint Dive into the research topics of 'Simulation of transonic flutter and active shockwave control'. Together they form a unique fingerprint.

Cite this