Simultaneous drone localisation and wind turbine model fitting during autonomous surface inspection

Oliver Moolan-Feroze, Konstantinos Karachalios, Dimitrios Nikolaidis, Andrew Calway

Research output: Chapter in Book/Report/Conference proceedingConference Contribution (Conference Proceeding)

14 Downloads (Pure)

Abstract

We present a method for simultaneous localisation and wind turbine model fitting for a drone performing an automated surface inspection. We use a skeletal parameteri- sation of the turbine that can be easily integrated into a non- linear least squares optimiser, combined with a pose graph representation of the drone’s 3-D trajectory, allowing us to optimise both sets of parameters simultaneously. Given images from an onboard camera, we use a CNN to infer projections of the skeletal model, enabling correspondence constraints to be established through a cost function. This is then coupled with GPS/IMU measurements taken at key frames in the graph to allow successive optimisation as the drone navigates around the turbine. We present two variants of the cost function, one based on traditional 2D point correspondences and the other on direct image interpolation within the inferred projections. Results from experiments on simulated and real-world data show that simultaneous optimisation provides improvements to localisation over only optimising the pose and that combined use of both cost functions proves most effective.
Original languageEnglish
Title of host publicationProceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Number of pages8
ISBN (Electronic)978-1-7281-4004-9
DOIs
Publication statusPublished - 27 Jan 2020

Publication series

NameIEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
PublisherIEEE
ISSN (Electronic)2153-0866

Keywords

  • model based tracking
  • SLAM
  • drone
  • wind turbine inspection

Fingerprint Dive into the research topics of 'Simultaneous drone localisation and wind turbine model fitting during autonomous surface inspection'. Together they form a unique fingerprint.

  • Cite this

    Moolan-Feroze, O., Karachalios, K., Nikolaidis, D., & Calway, A. (2020). Simultaneous drone localisation and wind turbine model fitting during autonomous surface inspection. In Proceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019) (IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/IROS40897.2019.8968247