Abstract
Recent work in local spatial modeling has affirmed and broadened interest in multivariate local spatial analysis. Two broad approaches have emerged: Geographically Weighted Regression (GWR) which follows a frequentist perspective and Bayesian Spatially Varying Coefficients models. Although several comparisons between the two approaches exist, recent developments, particularly in GWR, mean that these are incomplete and missing some important axes of comparison. Consequently, there is a need for a more thorough comparison of the two families of local estimators, including recent developments in multiscale variants and their relative performance under controlled conditions. We find that while both types of local models generally perform similarly on a series of criteria, some interesting and important differences exist.
Original language | English |
---|---|
Pages (from-to) | 223-246 |
Number of pages | 24 |
Journal | Geographical Analysis |
Volume | 50 |
Issue number | 3 |
Early online date | 10 Nov 2017 |
DOIs | |
Publication status | Published - 31 Jul 2018 |
Fingerprint
Dive into the research topics of 'Single and Multiscale Models of Process Spatial Heterogeneity'. Together they form a unique fingerprint.Prizes
-
-
The Measurement of Scale and Process Heterogeneity Through Local Multivariate Models
Fotheringham, A. (Recipient), Wolf, L. J. (Recipient) & Oshan, T. (Recipient), 1 Apr 2018
Prize: Prizes, Medals, Awards and Grants
Profiles
-
Dr Levi J Wolf
- School of Geographical Sciences - Associate Professor of Quantitative Human Geography
- Bristol Poverty Institute
- Cabot Institute for the Environment
Person: Academic , Member