Abstract
Let~$\tau$ be the primitive Dirichlet character of conductor~$4$, let~$\chi$ be the primitive even Dirichlet character of conductor~$8$ and let~$k$ be an integer. We show that the~$U_2$ operator acting on cuspidal overconvergent modular forms of weight~$2k-1$ and character~$\tau$ has slopes in the arithmetic progression\\~$\left\{2,4,\ldots,2n,\ldots\right\}$, and the~$U_2$ operator acting on cuspidal overconvergent modular forms of weight~$k$ and character~$\chi \cdot \tau^k$ has slopes in the arithmetic progression~$\left\{1,2,\ldots,n,\ldots\right\}$. We also show that the characteristic polynomials of the Hecke operators~$U_2$ and~$T_p$ acting on the space of classical cusp forms of weight~$k$ and character either~$\tau$ or~$\chi\cdot\tau^k$ split completely over~$\mathbf{Q}_2$.
Translated title of the contribution | Slopes of 2-adic overvconvergent modular forms with small level |
---|---|
Original language | English |
Pages (from-to) | 723 - 739 |
Number of pages | 17 |
Journal | Mathematics Research Letters |
Volume | 11 (6) |
Publication status | Published - Nov 2004 |