Soil-pile-bridge seismic interaction: Kinematic and inertial effects. Part I: Soft soil

George Mylonakis*, Aspasia Nikolaou, George Gazetas

*Corresponding author for this work

Research output: Contribution to journalArticle (Academic Journal)peer-review

166 Citations (Scopus)

Abstract

A substructuring method has been implemented for the seismic analysis of bridge piers founded on vertical piles and pile groups in multi-layered soil. The method reproduces semi-analytically both the kinematic and inertial soil-structure interaction, in a simple realistic way. Vertical S-wave propagation and the pile-to-pile interplay are treated with sufficient rigor, within the realm of equivalent-linear soil behaviour, while a variety of support conditions of the bridge deck on the pier can be studied with the method. Analyses are performed in both frequency and time domains, with the excitation specified at the surface of the outcropping ('elastic') rock. A parameter study explores the role of soil-structure interaction by elucidating, for typical bridge piers founded on soft soil, the key phenomena and parameters associated with the interplay between seismic excitation, soil profile, pile-foundation, and superstructure. Results illustrate the potential errors from ignoring: (i) the radiation damping generated from the oscillating piles, and (ii) the rotational component of motion at the head of the single pile or the pile-group cap. Results are obtained for accelerations of bridge deck and foundation points, as well as for bending moments along the piles.

Original languageEnglish
Pages (from-to)337-359
Number of pages23
JournalEarthquake Engineering and Structural Dynamics
Volume26
Issue number3
DOIs
Publication statusPublished - 1 Jan 1997

Keywords

  • Bridge
  • Pier
  • Pile group
  • Pile interaction
  • Radiation damping
  • Soil

Fingerprint Dive into the research topics of 'Soil-pile-bridge seismic interaction: Kinematic and inertial effects. Part I: Soft soil'. Together they form a unique fingerprint.

Cite this