Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms

J C Smith, A P L Abdala, H Koizumi, I A Rybak, J F R Paton

Research output: Contribution to journalArticle (Academic Journal)

279 Citations (Scopus)


Mammalian central pattern generators (CPGs) producing rhythmic movements exhibit extremely robust and flexible behavior. Network architectures that enable these features are not well understood. Here we studied organization of the brain stem respiratory CPG. By sequential rostral to caudal transections through the pontine-medullary respiratory network within an in situ perfused rat brain stem-spinal cord preparation, we showed that network dynamics reorganized and new rhythmogenic mechanisms emerged. The normal three-phase respiratory rhythm transformed to a two-phase and then to a one-phase rhythm as the network was reduced. Expression of the three-phase rhythm required the presence of the pons, generation of the two-phase rhythm depended on the integrity of Bötzinger and pre-Bötzinger complexes and interactions between them, and the one-phase rhythm was generated within the pre-Bötzinger complex. Transformation from the three-phase to a two-phase pattern also occurred in intact preparations when chloride-mediated synaptic inhibition was reduced. In contrast to the three-phase and two-phase rhythms, the one-phase rhythm was abolished by blockade of persistent sodium current (I(NaP)). A model of the respiratory network was developed to reproduce and explain these observations. The model incorporated interacting populations of respiratory neurons within spatially organized brain stem compartments. Our simulations reproduced the respiratory patterns recorded from intact and sequentially reduced preparations. Our results suggest that the three-phase and two-phase rhythms involve inhibitory network interactions, whereas the one-phase rhythm depends on I(NaP). We conclude that the respiratory network has rhythmogenic capabilities at multiple levels of network organization, allowing expression of motor patterns specific for various physiological and pathophysiological respiratory behaviors.
Original languageEnglish
Pages (from-to)3370-87
Number of pages18
JournalJournal of Neurophysiology
Issue number6
Publication statusPublished - 2007

Fingerprint Dive into the research topics of 'Spatial and functional architecture of the mammalian brain stem respiratory network: a hierarchy of three oscillatory mechanisms'. Together they form a unique fingerprint.

Cite this