Skip to content

Spatial pattern of plutonium and radiocaesium contamination released during the Fukushima Daiichi nuclear power plant disaster

Research output: Contribution to journalArticle

Original languageEnglish
Article number16799
Number of pages9
JournalScientific Reports
Volume8
Issue number1
DOIs
DateAccepted/In press - 4 Oct 2018
DatePublished (current) - 14 Nov 2018

Abstract

Plutonium and radiocaesium are hazardous contaminants released by the Fukushima Daiichi nuclear power plant (FDNPP) disaster and their distribution in the environment requires careful characterisation using isotopic information. Comprehensive spatial survey of 134Cs and 137Cs has been conducted on a regular basis since the accident, but the dataset for 135Cs/137Cs atom ratios and trace isotopic analysis of Pu remains limited because of analytical challenges. We have developed a combined chemical procedure to separate Pu and Cs for isotopic analysis of environmental samples from contaminated catchments. Ultra-trace analyses reveal a FDNPP Pu signature in environmental samples, some from further afield than previously reported. For two samples, we attribute the dominant source of Pu to Reactor Unit 3. We review the mechanisms responsible for an emergent spatial pattern in 134,135Cs/137Cs in areas northwest (high 134Cs/137Cs, low 135Cs/137Cs) and southwest (low 134Cs/137Cs, high 135Cs/137Cs) of FDNPP. Several samples exhibit consistent 134,135Cs/137Cs values that are significantly different from those deposited on plant specimens collected in previous works. A complex spatial pattern of Pu and Cs isotopic signature is apparent. To confidently attribute the sources of mixed fallout material, future studies must focus on analysis of individual FDNPP-derived particles.

Download statistics

No data available

Documents

Documents

  • Full-text PDF (final published version)

    Rights statement: This is the final published version of the article (version of record). It first appeared online via [insert publisher name] at [insert hyperlink] . Please refer to any applicable terms of use of the publisher.

    Final published version, 1 MB, PDF document

    Licence: CC BY

  • Supplementary information PDF

    Final published version, 93 KB, Word document

    Licence: CC BY

DOI

View research connections

Related faculties, schools or groups