TY - JOUR
T1 - Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis.
AU - Gühmann, M
AU - Jia, H
AU - Randel, N
AU - Verasztó, C
AU - Bezares-Calderón, LA
AU - Michiels, NK
AU - Yokoyama, S
AU - Jékely, G
PY - 2015/8/31
Y1 - 2015/8/31
N2 - Phototaxis is characteristic of the pelagic larval stage of most bottom-dwelling marine invertebrates [1]. Larval phototaxis is mediated by simple eyes that can express various types of light-sensitive G-protein-coupled receptors known as opsins [2-8]. Since opsins diversified early during metazoan evolution in the marine environment [9], understanding underwater light detection could elucidate this diversification. Opsins have been classified into three major families, the r-opsins, the c-opsins, and the Go/RGR opsins, a family uniting Go-opsins, retinochromes, RGR opsins, and neuropsins [10, 11]. The Go-opsins form an ancient and poorly characterized group retained only in marine invertebrate genomes. Here, we characterize a Go-opsin from the marine annelid Platynereis dumerilii [3-5, 12-15]. We found Go-opsin1 coexpressed with two r-opsins in depolarizing rhabdomeric photoreceptor cells in the pigmented eyes of Platynereis larvae. We purified recombinant Go-opsin1 and found that it absorbs in the blue-cyan range of the light spectrum. To characterize the function of Go-opsin1, we generated a Go-opsin1 knockout Platynereis line by zinc-finger-nuclease-mediated genome engineering. Go-opsin1 knockout larvae were phototactic but showed reduced efficiency of phototaxis to wavelengths matching the in vitro Go-opsin1 spectrum. Our results highlight spectral tuning of phototaxis as a potential mechanism contributing to opsin diversity.
AB - Phototaxis is characteristic of the pelagic larval stage of most bottom-dwelling marine invertebrates [1]. Larval phototaxis is mediated by simple eyes that can express various types of light-sensitive G-protein-coupled receptors known as opsins [2-8]. Since opsins diversified early during metazoan evolution in the marine environment [9], understanding underwater light detection could elucidate this diversification. Opsins have been classified into three major families, the r-opsins, the c-opsins, and the Go/RGR opsins, a family uniting Go-opsins, retinochromes, RGR opsins, and neuropsins [10, 11]. The Go-opsins form an ancient and poorly characterized group retained only in marine invertebrate genomes. Here, we characterize a Go-opsin from the marine annelid Platynereis dumerilii [3-5, 12-15]. We found Go-opsin1 coexpressed with two r-opsins in depolarizing rhabdomeric photoreceptor cells in the pigmented eyes of Platynereis larvae. We purified recombinant Go-opsin1 and found that it absorbs in the blue-cyan range of the light spectrum. To characterize the function of Go-opsin1, we generated a Go-opsin1 knockout Platynereis line by zinc-finger-nuclease-mediated genome engineering. Go-opsin1 knockout larvae were phototactic but showed reduced efficiency of phototaxis to wavelengths matching the in vitro Go-opsin1 spectrum. Our results highlight spectral tuning of phototaxis as a potential mechanism contributing to opsin diversity.
UR - http://europepmc.org/abstract/med/26255845
U2 - 10.1016/j.cub.2015.07.017
DO - 10.1016/j.cub.2015.07.017
M3 - Article (Academic Journal)
C2 - 26255845
SN - 0960-9822
VL - 25
SP - 2265
EP - 2271
JO - Current Biology
JF - Current Biology
IS - 17
ER -