Abstract
Theories of the origin of superconductivity in cuprates are dependent on an understanding of their normal state which exhibits various competing orders. Transport and thermodynamic measurements on La$_{2-x}$Sr$_x$CuO$_4$ show signatures of a quantum critical point, including a peak in the electronic specific heat $C$ versus doping p, near the doping p*, where the pseudogap collapses. The fundamental nature of the fluctuations associated with this peak is unclear. Here we use inelastic neutron scattering to show that close to $T_c$ and near p*, there are low-energy collective spin excitations with characteristic energies $\approx$ 5 meV. The correlation length of the spin fluctuations does not diverge in spite of the low energy scale and we conclude that the underlying quantum criticality is not due to antiferromagnetism but most likely to a collapse of the pseudogap. We show that the large specific heat near p* can be understood in terms of collective spin fluctuations. The spin fluctuations we measure exist across the superconducting phase diagram and may be related to the strange metal behaviour observed in overdoped cuprates.
Original language | English |
---|---|
Pages (from-to) | 99-105 |
Number of pages | 7 |
Journal | Nature Physics |
Volume | 19 |
Issue number | 1 |
Early online date | 17 Nov 2022 |
DOIs | |
Publication status | Published - 1 Jan 2023 |
Bibliographical note
Funding Information:We are grateful to J. R. Stewart for running the LET experiment. We acknowledge useful discussions with A. Carrington and N. E. Hussey. M.Z. and S.M.H. acknowledge funding and support from the Engineering and Physical Sciences Research Council (EPSRC) under grant no. EP/R011141/1. We acknowledge the ISIS Facility for instrument time at beamline LET under proposal RB1920542, MERLIN under proposal RB2010576 and Institut Laue-Langevin for time at IN12 under proposal no. 4-02-561.
Funding Information:
We are grateful to J. R. Stewart for running the LET experiment. We acknowledge useful discussions with A. Carrington and N. E. Hussey. M.Z. and S.M.H. acknowledge funding and support from the Engineering and Physical Sciences Research Council (EPSRC) under grant no. EP/R011141/1. We acknowledge the ISIS Facility for instrument time at beamline LET under proposal RB1920542, MERLIN under proposal RB2010576 and Institut Laue-Langevin for time at IN12 under proposal no. 4-02-561.
Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature Limited.
Keywords
- cond-mat.supr-con
- cond-mat.str-el